Professor Fearing
EECS120/Problem Set 1 v 1.03
Fall 2016
Due at 4 pm, Fri. Sep. 2 in HW box under stairs (1st floor Cory) (Up to 2 people may turn in a single homework writeup with both names listed.)
Reading: EE16AB notes. This problem set should be review of material from EE16AB. (Please note, vector notation here is $\mathbf{x}=\vec{x}, u$ is a scalar, and A is a matrix.)

1. (18 pts) Complex review.

Given $z=x+j y=r e^{j \theta}$. Derive the following relations:
a. $z z^{*}=r^{2}$
b. $\frac{z}{z^{*}}=e^{j 2 \theta}$
c. $\left(z_{1} z_{2}\right)^{*}=z_{1}^{*} z_{2}^{*}$
d. $\left(\frac{z_{1}}{z_{2}}\right)^{*}=\frac{z_{1}^{*}}{z_{2}^{*}}$
e. Show that $\frac{1}{2}\left(e^{j \omega t}+e^{-j \omega t}\right)^{2}-1=\cos 2 \omega t$
f. Find all integer $k \in\{0,1, \ldots 15\}$ for which $\sum_{n=0}^{15} e^{j 2 \pi n k / 16}=0$.
2. (24 pts) Phasors and Operational Amplifiers

Consider the circuit in Fig. 2. Use the "golden rules" (ideal) ideal op amp assumptions.
a. Using phasors, determine the transfer function $H=\frac{V_{o}}{V_{i}}$.
b. Sketch the magnitude Bode plot (log-log scale) for $H(\omega)$.
c. What filter function is performed (low pass, high pass, etc.)?

3. (18 pts) State space

For the circuit shown in Fig. 1, let the state variables x_{1} be $v_{c}(t)$, and x_{2} be the inductor current. The input $u=v_{i}(t)$ and output $y(t)$ is the voltage across the $1 M \Omega$ resistor. Let $C=10^{-6} F$ and $R_{2}=10 M \Omega$.
a. Write the differential equation for the circuit in state space form (find A, B, C, D):

$$
\dot{\mathbf{x}}=A \mathbf{x}+B u \quad y=C \mathbf{x}+D u
$$

b. Determine the eigenvalues and eigenvectors for A. (MatLAB or python ok). Is the system stable?

Fig. 1
4. (20 pts) LDE solutions

Consider $\dot{\mathbf{x}}=A \mathbf{x}$ where initial condition $\mathbf{x}_{o}=\left[\begin{array}{c}5 \\ 10\end{array}\right]$ and $A=\left[\begin{array}{cc}0 & 1 \\ -10 & -11\end{array}\right]$
a. Show that the general solution is $\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$ where λ_{1}, λ_{2} are eigenvalues of A with corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and find eigenvalues and eigenvectors.
b. Plot each component of the solution and the phase portrait for the given initial condition. The phase portrait is a 2 dimensional plot of $x_{1}(t)$ vs $x_{2}(t)$. (Hand sketch is fine.)

5. (20 pts) DFT basics

The Discrete Time Fourier Series (DTFS) is defined as

$$
a[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{\frac{-j 2 \pi n k}{N}}=\frac{1}{N} \sum_{n=0}^{N-1} x[n] W_{N}^{n k}
$$

where $W_{N} \equiv e^{-j 2 \pi / N}$, and $k \in\{0,1, \ldots, N-1\}$.
a. Show that the DTFS can be written as $\mathbf{a}=U \mathbf{x}$ for $N=4$, and write U in terms of W_{4}.
b. What special property or properties do the columns of U have?
c. For $N=4$, and $x[n]=\cos \frac{\pi n}{2}$, find a in terms of W_{4} (simplify).
d. For $N=8$, and $\mathbf{x}=\left[\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array} 00\right]^{T}$, find \mathbf{a} in terms of W_{8} (simplify).

