
Professor Fearing EECS120/Python MiniLab 2 v1.01 (draft) Fall 2016
Due at 6 pm, Fri. Oct. 21 on BCourses
Up to 2 people may turn in a single iPython (Jupyter) notebook. Upload .ipynb and answers in pdf.

This exercise is worth 2% grade. (Python exercises will be 9% of grade).
Notes: Use Python 2.7, not 3.
Notebook file is: www-inst.eecs.berkeley.edu/~ee120/fa16/hwk/digitalrcvr.ipynb

Sound file is: www-inst.eecs.berkeley.edu/~ee120/fa16/hwk/xmit-signal.wav

In this Python exercise, you will model a digital quadrature amplitude modulation receiver. The received
signal includes two channels, each with two signals. Similar to PS6-3, the received signal is:

r(t) = s1(t) cos(ωct) + s2(t) sin(ωct) + s3(t) cos(ωdt) + s4(t) sin(ωdt)

Here ωc = (2π)300.0 × 103s−1 and ωd = (2π)316.0 × 103s−1.

The discrete time signal r[n] = r(nTs) where 1
Ts

= 16·44.1kHz. This file is provided as xmit-signal.wav.
The signals s1(t)...s4(t) are substantially bandlimited to 8 kHz.

The output of the Jupyter notebook should be the recovered signals s1[n], s2[n], s3[n], s4[n] in 4 .wav files
sig1.wav, sig2.wav, sig3.wav, sig4.wav which are downsampled to 44.1kHz.

The data file contains 222 = 4, 194304 samples (a power of 2 is chosen for FFT efficiency). Efficient python
code will be needed to have short run times. In particular np.multiply() with vectors is much quicker than
a for loop. Use for speed, use the built-in numpy FFT np.fft.fft(x) and inverse FFT np.fft.ifft(X).

1. (10 pts) Draw a block diagram for the digital receiver to recover s1[n], s2[n], s3[n], s4[n] from r[n].

2. (20 pts) Sketch approximate DFT spectra for R[k], S1[k] and spectra before filtering.

3. (10 pts) Find kc and kd which correspond to ωc and ωd respectively. What is the bandwidth taken
by the modulated signals, r(t)? In the Jupyter notebook specify kmin and kmax to plot R[k] in this range.

4. (10 pts) If a digital low pass filter has a cutoff frequency 8 kHz, what is the corresponding kcutoff?
Specify a digital LPF H[k] with cutoff frequency 8 kHz. Be sure to specify H such that a real input will
give a real output. Sketch H[k].

5. (40 pts) Complete the functions necessary in the Jupyter notebook to recover s1[n], s2[n], s3[n], s4[n]
from r[n] and store in the .wav files. If your algorithm is working correctly, each file should be a short
playable segment.

6. (10 pts) Performance.
Briefly note any quality issues in the 4 recovered signals. How large can the cutoff frequency be before
channels interfere? Is the interference audible with large cutoff frequency?

1


