An interesting issue arises when a windowed signal is sampled exactly at the edges. Referring to Figure 1 , consider a rectangular window $w(t)=\Pi(t / 2)=u(t+1)-u(t-1)$, and sampling rate $T_{s}=1.0 \mathrm{sec}$. Let $x(t)=1$, to consider effects of the window. (Note that in problem set 4, we did not sketch the sampled and windowed signal in time.)

Let the sampling function be $p(t)=\sum_{n=-\infty}^{\infty} \delta(t-n)$.
Then

$$
\begin{align*}
x_{\delta}(t) & =w(t) * p(t) \tag{1}\\
& =\Pi(t / 2)[\delta(t+1)+\delta(t)+\delta(t-1)] \tag{2}\\
& =\delta(t+1) u(t+1)+\delta(t)+\delta(t-1)(1-u(t-1))] \tag{3}\\
& =0.5 \delta(t+1)+\delta(t)+0.5 \delta(t-1) \tag{4}
\end{align*}
$$

if we take $u(t=0)=0.5$. We can show this is the case by calculating $X_{\delta}(j \omega)$ and then using the inverse Fourier transform.

Calculate Fourier transforms:

$$
\begin{gathered}
w(t)=\Pi(t / 2) \rightarrow W(j \omega)=\frac{2 \sin \omega}{\omega} \\
p(t)=\sum_{n=-\infty}^{\infty} \delta(t-n) \rightarrow P(j \omega)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-k 2 \pi)
\end{gathered}
$$

The sampled spectrum is obtained from convolution in frequency, with

$$
X_{\delta}(j \omega)=\frac{1}{2 \pi} W(j \omega) * P(j \omega)=\frac{1}{2 \pi} W(j \omega) * 2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-k 2 \pi)
$$

The spectrum for the sampled window is then:

$$
X_{\delta}(j \omega)=\sum_{k=-\infty}^{\infty} W(j(\omega-2 \pi k)
$$

Several frequency points are easy to calculate: $\omega=0,2 \pi, 4 \pi, \ldots, \omega=\pi, 3 \pi, 5 \pi, \ldots$, and $\omega=\frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$:
$X_{\delta}(j 2 \pi n)=\sum_{k=-\infty}^{\infty} W(j 2 \pi(n-k))=2 \delta[n-k]$

$$
X_{\delta}(j(2 n+1) \pi)=\sum_{k=-\infty}^{\infty} W(j \pi(2 n+1-2 k))=\frac{2 \sin \pi(2 n+2 k+1)}{\pi(2 n+2 k+1)}=0
$$

Figure 1: Block diagram of DFT processing steps.

Figure 2: Superposition of 3 sinc functions centered at $-2 \pi, 0,2 \pi$.

We know that $X_{\delta}(j \omega)$ is periodic with period 2π. Since $\operatorname{sinc}()$ is even,

$$
X_{\delta}\left(\pm j \frac{\pi}{2}\right)=X_{\delta}\left(\pm j \frac{3 \pi}{2}\right)=X_{\delta}\left(\pm j \frac{5 \pi}{2}\right)=\ldots
$$

Adding up all the 'aliased" copies of the sincs at $\omega=j \frac{\pi}{2}$, we get:

$$
\begin{equation*}
X_{\delta}\left(j \frac{\pi}{2}\right)=\sum_{k=-\infty}^{\infty} W\left(j\left(2 \pi k-\frac{\pi}{2}\right)\right) \tag{5}
\end{equation*}
$$

For a single sinc:

$$
W\left(j\left(2 \pi k-\frac{\pi}{2}\right)\right)=\frac{2 \sin \left[2 \pi k-\frac{\pi}{2}\right]}{2 \pi k-\frac{\pi}{2}}=\frac{2 \sin \left[2 \pi k-\frac{\pi}{2}\right]}{\frac{\pi}{2}(4 k-1)}=\frac{4}{\pi}\left[\frac{-1}{4 k-1}\right]
$$

For $k=0,1,2,3, \ldots$ we get

$$
\frac{4}{\pi}\left(1, \frac{-1}{3}, \frac{-1}{7}, \frac{-1}{11}, \ldots\right)
$$

For $k=-1,-2,-3, \ldots$ we get

$$
\frac{4}{\pi}\left(\frac{1}{5}, \frac{1}{9}, \frac{1}{13}, \ldots\right)
$$

Using the samples at odd multiples of $\frac{\pi}{2}$ from eqn. (5), we get:

$$
\begin{equation*}
X_{\delta}\left(j \frac{\pi}{2}\right)=\sum_{k=-\infty}^{\infty} \frac{4}{\pi}\left[\frac{-1}{4 k-1}\right]=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{-1^{n}}{2 n+1} \tag{6}
\end{equation*}
$$

Conveniently, eqn. (6) is just the Taylor series for $\tan ^{-1}(1)$, i.e.:

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}, \ldots
$$

Thus $X_{\delta}\left(j \frac{\pi}{2}\right)=\frac{4}{\pi} \frac{\pi}{4}=1$
Perhaps surprisingly, it can be shown that

$$
X_{\delta}(j \omega)=\cos (\omega)+1
$$

This spectrum is obtained by the Fourier transform of $x_{\delta}(t)$:

$$
x_{\delta}(t)=0.5 \delta(t+1)+\delta(t)+0.5 \delta(t-1) \rightarrow X_{\delta}(j \omega)=0.5 e^{j \omega}+1+0.5 e^{-j \omega}=\cos (\omega)+1
$$

A sum of shifted sincs tends to a sinusoid as suggested by the spectrum shown in Fig. 2.

