
Discussion 9: Sampling and Laplace Transform Practice

1. Sampling with Zero-order-hold *Sinc-interpolation block diagram:*

Zero-order-hold block diagram:

Consider $x(t) = \cos(2\pi 60t)$, $f_{sampling} = 360Hz$.

- a) Sample the signal using Dirac deltas, show that we can recover the original signal using an ideal LPF (following sinc-interpolation block diagram).
- b) Sample the signal using zero-order-hold, find h(t) such that we can recover the original signal.

2. Laplace Transform Practice

Analysis Equation

$$X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt$$

Synthesis Equation

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) e^{st} ds$$

- a) Find $X(s) = \mathcal{L}\{e^{-\alpha t}u(t)\}$ using the analysis equation.
- b) Find $X(s) = \mathcal{L}\{-e^{-\alpha t}u(-t)\}$ using the analysis equation.

- c) Find x(t) if $X(s) = \frac{1}{(s+1)(s+2)}$, with region of convergence, $Re\{s\} > -1$.
- d) Find x(t) if $X(s) = \frac{1}{(s+1)(s+2)}$, with region of convergence, $-2 < Re\{s\} < -1$.