Discussion 4: Fourier Transform Properties and Practice

1. FT Properties	
Definition: Fourier Transform	$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$
Do the following proofs:	
(a) Prove the <u>linearity property</u> of the FT:	$ax(t) + by(t) \leftrightarrow aX(j\omega) + bY(j\omega)$

- (b) Prove the <u>time-shifting property</u> of the FT: $x(t t_0) \leftrightarrow e^{-j\omega t_0} X(j\omega)$
- (c) Prove the <u>convolution property</u> of the FT: $x(t) * y(t) \leftrightarrow X(j\omega)Y(j\omega)$

(d) Prove the time-scaling property of the FT:
$$x(at) \leftrightarrow \frac{1}{|a|} X\left(\frac{j\omega}{a}\right)$$

Definition: Inverse Fourier Transform
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{+j\omega t} d\omega$$

Do the following proofs:

(e) Prove the <u>frequency-shifting property</u> of the IFT: $X(j(\omega - \omega_0)) \leftrightarrow e^{j\omega_0 t} x(t)$

(f) Prove the convolution property of the IFT:
$$\frac{1}{2\pi}X(j\omega) * Y(j\omega) \leftrightarrow x(t) \cdot y(t)$$

2. FT Practice

(a) What is the Fourier Transform of $x(t) = e^{-\alpha t}u(t)$; $X(j\omega) = FT\{x(t)\}$? What restrictions are there on the parameter α ?

(b) What is the Fourier Transform of a rectangle function, $x(t) = \prod \left(\frac{t}{2}\right)$?

(c) Find the Fourier Transform of x(t) using FT properties (O.W. Table 4.1) and FT pairs (O.W. Table 4.2):

$$x(t) = \frac{\sin(t)\sin\left(\frac{t}{2}\right)}{\pi t^2}$$