The z-Transform

11/14, EE 120 Fall 2016 Ming Jin

Z transform

DTFT can be interpreted as the z-transform evaluated on the unit circle,

$$X(e^{j\omega}) = X(z)|_{z=e^{j\omega}}$$

Comparisons between Laplace and Z transform

BASICS OF TWO-SIDED LAPLACE AND Z TRANSFORMS				
DEFINITION	APPLICATIN	IMPORTANCE	CONVOLUTION	
$L[x(t)] = \int x(t)e^{-st}dt$	Differential eqns.	$L[dx^N/dt^N]=s^NX(s)$	L[x(t)*y(t)]=X(s)Y(s)	
$Z[x(n)]=\sum x(n)z^{-n}$	Difference eqns.	$Z[x(n-N)]=z^{-N}X(z)$	Z[x(n)*y(n)]=X(z)Y(z)	
PROPERTIES OF TWO-SIDED LAPLACE AND Z TRANSFORMS				
TIME SCALE	REVERSAL	INITIAL VALUE	TIME MULTIPLY	
$L[e^{at}x(t)]=X(s-a)$	L[x(-t)]=X(-s)	$x(0)=\lim_{s\to\infty}sX(s)$	L[tx(t)]=-dX(s)/ds	
$Z[a^n x(n)]=X(z/a)$	Z[x(-n)]=X(1/z)	$x(0)=\lim_{z\to\infty} X(z)$	Z[nx(n)]=-zdX(z)/dz	
EXAMPLES OF TWO-SIDED LAPLACE AND Z TRANSFORMS				
IMPULSE	UNIT STEP	CAUSAL EXP.	ANTICAUSAL EXP.	
L[δ(t)]=1	L[u(t)]=1/s	L[e ^{at} u(t)]=1/(s-a)	$L[-e^{at}u(-t)]=1/(s-a)$	
Z[δ(n)]=1	Z[u(n)]=z/(z-1)	$Z[a^n u(n)]=z/(z-a)$	$Z[-a^nu(-n-1)]=z/(z-a)$	

http://web.eecs.umich.edu/~aey/eecs451/lectures/zl.html

Properties of ROC of Z-Transform

SIGNAL TYPE	CAUSAL	ANTICAUSAL	TWO-SIDED
FINITE LENGTH	${x(0)x(N)}$	$\{X(-N)x(0)\}$	${x(-M)x(N)}$
	{z: 0< z ≤∞}	{z: 0≤ z <∞}	{z: 0< z <∞}
ONE SINGLE EXPONENTIAL	a ⁿ u(n)	-a ⁿ u(-n-1)	a ⁿ u(n)+b ⁿ u(-n-1)
	{z: z > a }	$\{z: z < a \}$	z: a < z < b
SUM SEVERAL EXPONENTIALS	$\sum c_i p_i^n u(n)$	$\sum d_i q_i^n u(-n-1)$	SUM OF THESE 2
	z >max[p _i]	z <min[q<sub>i]</min[q<sub>	max[lp _i l] <lzl<min[q<sub>i]</lzl<min[q<sub>

Causality and Stability

- A discrete time LTI system is causal when
 - ROC is outside the outermost pole.
 - In the transfer function H[z], the order of numerator cannot be greater than the order of denominator.
- A discrete time LTI system is stable when
 - its system function H[z] include unit circle |z|=1.
 - \circ all poles of the transfer function lay inside the unit circle |z|=1.