1. DFT basics

We can think of a real-world signal that is a function of time $x(t)$. By recording its values at regular intervals, we can represent it as a vector of discrete samples \mathbf{x}, of length N. Let $\mathbf{x}=\left[\begin{array}{llll}x[0] & x[1] & \cdots & x[N-1]\end{array}\right]^{T}$, and $\mathbf{X}=\left[\begin{array}{lll}X[0] & \ldots & X[N-1]\end{array}\right]^{T}$ be the signal \mathbf{x} represented in the frequency domain, that is,

$$
X[k]=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{\frac{-j 2 \pi n k}{N}} \quad \text { and } \quad x[n]=\sum_{k=0}^{N-1} X[k] e^{\frac{j 2 \pi n k}{N}}
$$

(a) For the signal $x[n]=\cos \left(\frac{2 \pi K}{N} n\right)$, compute the DFT coefficients \mathbf{X}, where \mathbf{x} is given by:

$$
\mathbf{x}=\left[\begin{array}{llll}
\cos \left(\frac{2 \pi K}{N}(0)\right) & \cos \left(\frac{2 \pi K}{N}(1)\right) & \cdots & \cos \left(\frac{2 \pi K}{N}(n-1)\right)
\end{array}\right]^{T} .
$$

In the parts below, please note that the signal \mathbf{y} is also length N, and that its DFT is defined in a manner identical to that of \mathbf{x}.

Prove the following properties:
(b) Linearity: $\alpha x[n]+\beta y[n] \longleftrightarrow \alpha X[k]+\beta Y[k]$, where α and β are scalar constants.
(c) Time-Shifting Property: $x[n-M] \longleftrightarrow X[k] e^{\frac{-j 2 \pi M k}{N}}$, where M is an integer.
(d) Frequency Shifting Property: $e^{\frac{j 2 \pi n m}{N}} x(n) \longleftrightarrow X[k-m]$, where m is an integer.
(e) Parseval-Plancherel-Rayleigh Identity

$$
\frac{1}{N} \sum_{n=0}^{N-1} x[n] y^{*}[n]=\sum_{k=0}^{N-1} X[k] Y^{*}[k]
$$

In the special case where $\mathbf{x}=\mathbf{y}$ the identity above expresses the energy of the signal in the frequency domain (i.e., in terms of its spectrum):

$$
\frac{1}{N} \sum_{n=0}^{N-1}|x[n]|^{2}=\sum_{k=0}^{N-1}|X[k]|^{2}
$$

2. Op-Amps and Transfer Functions

(a) Write the frequency response function $H(\omega)=\frac{V_{\text {out }}}{V_{\text {in }}}$ for the circuit.
(b) If $R=1 \mathrm{k} \Omega$ and $C=100 \mathrm{nF}$, plot the log-magnitude of $H(\omega)$ and label important magnitudes and frequencies. (Again assume that $H(-\omega)=H(\omega)$.)
(c) What does this circuit do?

Hint: Try to set up the differential equation relating $V_{\text {out }}$ and $V_{i n}$ to work this out.
3. Matrix differential equations (take-home exercise)

In this problem, we consider ordinary differential equations which can be written in the following form

$$
\begin{equation*}
\binom{x^{\prime}(t)}{y^{\prime}(t)}=A\binom{x(t)}{y(t)}, \tag{1}
\end{equation*}
$$

where x, y are variables depending on $t, x^{\prime}=\frac{d x}{d t}, y^{\prime}=\frac{d y}{d t}$, and A is a 2×2 matrix with constant coefficients. We call (1) a matrix differential equation.

1. Suppose we have a system of ordinary differential equations

$$
\begin{align*}
x^{\prime} & =8 x+7 y \tag{2}\\
y^{\prime} & =-4 x-3 y \tag{3}
\end{align*}
$$

Write this in the form of (1).
2. Compute the eigenvalues and eigenvectors of the matrix A from the previous part.
3. We claim that the solution for $x(t), y(t)$ is of the form

$$
\binom{x(t)}{y(t)}=c_{0} e^{\lambda_{0} t} \vec{v}_{0}+c_{1} e^{\lambda_{1} t} \vec{v}_{1},
$$

where c_{0}, c_{1} are constants, and λ_{0}, λ_{1} are the eigenvalues of A with eigenvectors \vec{v}_{0}, \vec{v}_{1} respectively. Suppose that the initial conditions are $x(0)=1, y(0)=1$. Solve for the constants c_{0}, c_{1}.
4. Verify that the solution for $x(t), y(t)$ found in the previous part satisfies the original system of differential equations (2), (3).
5. We now apply the method above to solve a second order ordinary differential equation. Suppose we have the system

$$
\begin{equation*}
z^{\prime \prime}(t)-5 z^{\prime}(t)+6 z(t)=0 \tag{4}
\end{equation*}
$$

Write this in the form of (1), by using the change of variables $x(t)=z(t), y(t)=z^{\prime}(t)$.
6. Solve the system in (4) with the initial conditions $z(0)=1, z^{\prime}(0)=1$, using the method developed in parts (b) and (c).

