1. Causality:

For a causal continuous-time LTI system, we have

$$h(t) = 0 t < 0$$

Since h(t) is a right-sided signal, the corresponding requirement on H(s) is that the ROC of H(s) must be of the form

$$Re(s) > \sigma_{max}$$

That is, the ROC is the region in the s-plane to the right of all of the system poles. Similarly, if the system is anticausal, then

$$h(t) = 0 \qquad t > 0$$

and h(t) is left-sided. Thus, the ROC of H(s) must be of the form

$$Re(s) < \sigma_{min}$$

That is, the ROC is the region in the s-plane to the left of all of the system poles.

2. Stability:

In Sec. 2.3 we stated that a continuous-time LTI system is BIBO stable if and only if [Eq. (2.21)]

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty$$

The corresponding requirement on H(s) is that the ROC of H(s) contains the $j\omega$ -axis (that is, $s = j\omega$) (Prob. 3.26).

3. Causal and Stable Systems:

If the system is both causal and stable, then all the poles of H(s) must lie in the left half of the s-plane; that is, they all have negative real parts because the ROC is of the form $\text{Re}(s) > \sigma_{\text{max}}$, and since the $j\omega$ axis is included in the ROC, we must have $\sigma_{\text{max}} < 0$.

C. System Function for LTI Systems Described by Linear Constant-Coefficient Differential Equations:

In Sec. 2.5 we considered a continuous-time LTI system for which input x(t) and output y(t) satisfy the general linear constant-coefficient differential equation of the form

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$
 (3.38)

Applying the Laplace transform and using the differentiation property (3.20) of the Laplace transform, we obtain

$$\sum_{k=0}^{N} a_k s^k Y(s) = \sum_{k=0}^{M} b_k s^k X(s)$$

In this case, the system function H(s) is an improper fraction and can be rewritten as

$$H(s) = \frac{1}{R} \frac{s + 1/RC - 1/RC}{s + 1/RC} = \frac{1}{R} - \frac{1}{R^2C} \frac{1}{s + 1/RC}$$

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse response h(t) is

$$h(t) = \mathcal{L}^{-1}{H(s)} = \frac{1}{R}\delta(t) - \frac{1}{R^2C}e^{-t/RC}u(t)$$

Note that we obtained different system functions depending on the different sets of input and output.

3.24. Using the Laplace transform, redo Prob. 2.5.

From Prob. 2.5 we have

$$h(t) = e^{-\alpha t}u(t)$$
 $x(t) = e^{\alpha t}u(-t)$ $\alpha > 0$

Using Table 3-1, we have

$$H(s) = \frac{1}{s+\alpha} \qquad \text{Re}(s) > -\alpha$$

$$X(s) = -\frac{1}{s - \alpha} \qquad \text{Re}(s) < \alpha$$

Thus.

$$Y(s) = X(s)H(s) = -\frac{1}{(s+\alpha)(s-\alpha)} = -\frac{1}{s^2 - \alpha^2} \qquad -\alpha < \operatorname{Re}(s) < \alpha$$

and from Table 3-1 (or Prob. 3.6) the output is

$$y(t) = \frac{1}{2\alpha} e^{-\alpha|t|}$$

which is the same as Eq. (2.67).

- **3.25.** The output y(t) of a continuous-time LTI system is found to be $2e^{-3t}u(t)$ when the input x(t) is u(t).
 - (a) Find the impulse response h(t) of the system.
 - (b) Find the output y(t) when the input x(t) is $e^{-t}u(t)$.

(a)
$$x(t) = u(t), y(t) = 2e^{-3t}u(t)$$

Taking the Laplace transforms of x(t) and y(t), we obtain

$$X(s) = \frac{1}{s} \qquad \text{Re}(s) > 0$$

$$Y(s) = \frac{2}{s+3} \qquad \text{Re}(s) > -3$$

ut

Hence, the system function H(s) is

$$H(s) = \frac{Y(s)}{X(s)} = \frac{2s}{s+3} \qquad \text{Re}(s) > -3$$

Rewriting H(s) as

$$H(s) = \frac{2s}{s+3} = \frac{2(s+3)-6}{s+3} = 2 - \frac{6}{s+3} \qquad \text{Re}(s) > -3$$

and taking the inverse Laplace transform of H(s), we have

$$h(t) = 2\delta(t) - 6e^{-3t}u(t)$$

Note that h(t) is equal to the derivative of $2e^{-3t}u(t)$ which is the step response s(t) of the system [see Eq. (2.13)].

(b)
$$x(t) = e^{-t}u(t) \longleftrightarrow \frac{1}{s+1} \qquad \text{Re}(s) > -1$$

Thus,

$$Y(s) = X(s)H(s) = \frac{2s}{(s+1)(s+3)}$$
 Re(s) > -1

Using partial-fraction expansions, we get

$$Y(s) = -\frac{1}{s+1} + \frac{3}{s+3}$$

Taking the inverse Laplace transform of Y(s), we obtain

$$y(t) = (-e^{-t} + 3e^{-3t})u(t)$$

3.26. If a continuous-time LTI system is BIBO stable, then show that the ROC of its system function H(s) must contain the imaginary axis, that is, $s = j\omega$.

A continuous-time LTI system is BIBO stable if and only if its impulse response h(t) is absolutely integrable, that is [Eq. (2.21)],

$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$

By Eq. (3.3)

$$H(s) = \int_{-\infty}^{\infty} h(t)e^{-st} dt$$

Let $s = j\omega$. Then

$$|H(j\omega)| = \left| \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt \right| \le \int_{-\infty}^{\infty} |h(t) e^{-j\omega t}| dt = \int_{-\infty}^{\infty} |h(t)| dt < \infty$$

Therefore, we see that if the system is stable, then H(s) converges for $s = j\omega$. That is, for a stable continuous-time LTI system, the ROC of H(s) must contain the imaginary axis $s = j\omega$.

the