Discussion Section \#4, 14 Feb 2014

Lillian Ratliff
Example 1. Consider the signal $x(t)$ as shown below

1. Find the FT $X(j \omega)$ of $x(t)$
2. Sketch the signal

$$
\tilde{x}(t)=x(t) * \sum_{-\infty}^{\infty} \delta(t-4 k)
$$

3. Find another signal $g(t)$ such that $g(t)$ is not the same as $x(t)$ and

$$
\tilde{x}(t)=g(t) * \sum_{k=-\infty}^{\infty} \delta(t-4 k)
$$

Solution:

1. Not that $x(t)=x_{1}(t) * x_{1}(t)$ where

$$
x_{1}(t)=\left\{\begin{array}{cc}
1, & |t| \leq \frac{1}{2} \\
0, & \text { o.w }
\end{array}\right.
$$

Also,

$$
X_{1}(j \omega)=\int_{-1 / 2}^{1 / 2} e^{-j \omega t} d t=\left.\frac{e^{-j \omega t}}{-j \omega}\right|_{t=-1 / 2} ^{1 / 2}=\frac{e^{-j \omega / 2}-e^{j \omega / 2}}{-j \omega}=\frac{2}{\omega} \frac{e^{j \omega / 2}-e^{-j \omega / 2}}{2 j}=2 \frac{\sin \left(\frac{\omega}{2}\right)}{\omega}
$$

Using the convolution property, we get

$$
X(j \omega)=X_{1}(j \omega) X_{1}(j \omega)=\left(2 \frac{\sin \left(\frac{\omega}{2}\right)}{\omega}\right)^{2}
$$

2.

$$
\tilde{x}(t)=\sum_{k=-\infty}^{\infty} x(t-4 k)
$$

3. One possible choice for $g(t)$ is

Example 2. Find the DTFT of $n a^{n+1} u[n+1],|a|<1$.

Solution:

Note that

$$
n a^{n+1} u[n+1]=(n+1) a^{n+1} u[n+1]-a^{n+1} u[n+1]
$$

(This is just zero rewritten). Further,

$$
a^{n} u[n] \longleftrightarrow \frac{1}{1-a e^{-j \omega}}
$$

The DTFT of the second term can be obtained by the time-shift property

$$
a^{n+1} u[n+1] \longleftrightarrow \frac{e^{j \omega}}{1-a e^{-j \omega}}
$$

The DTFT of the first term can be obtained using the frequency differentiation property

$$
n a^{n} u[n] \longleftrightarrow j \frac{d}{d \omega}\left(\frac{1}{1-a e^{-j \omega}}\right)=j(-1) \frac{-a e^{-j \omega}(-j)}{\left(1-a e^{-j \omega}\right)^{2}}=\frac{a e^{-j \omega}}{\left(1-a e^{-j \omega}\right)^{2}}
$$

Hence,

$$
(n+1) a^{n+1} u[n+1] \longleftrightarrow \frac{a e^{-j \omega} e^{j \omega}}{\left(1-a e^{-j \omega}\right)^{2}}=\frac{a}{\left(1-a e^{-j \omega}\right)^{2}}
$$

Combining the two pieces we get

$$
n a^{n+1} u[n+1] \longleftrightarrow \frac{a}{\left(1-a e^{-j \omega}\right)^{2}}-\frac{e^{j \omega}}{1-a e^{-j \omega}}
$$

Example 3. Find the DTFT of $x[n] \equiv 1$

Solution:

Note that if $\tilde{X}\left(e^{j \omega}\right)=\sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)$ then

$$
\tilde{x}[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta(\omega) e^{j \omega n} d \omega=\frac{1}{2 \pi} \quad \forall n
$$

Hence, if $x[n] \equiv 1$, we have

$$
X\left(e^{j \omega}\right)=2 \pi \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)
$$

Example 4. Consider the difference equation

$$
y[n]-1.2 y[n-1]+0.36 y[n-2]=x[n]+x[n-1]
$$

1. Find the frequency response $H\left(e^{j \omega}\right)$
2. Use $H\left(e^{j \omega}\right)$ to calculate the impulse response.

Solution:

1.

$$
h[n]-1.2 h[n-1]+0.36 h[n-2]=\delta[n]+\delta[n-1]
$$

taking the FT we have

$$
H\left(e^{j \omega}\right)\left(1-1.2 e^{-j \omega}+0.36 e^{-j 2 \omega}\right)=\left(1+e^{-j \omega}\right)
$$

so that

$$
H\left(e^{j \omega}\right)=\frac{1+e^{-j \omega}}{1-1.2 e^{-j \omega}+0.36 e^{-j 2 \omega}}
$$

2. Note that $z^{2}-1.2 x+0.36=(z-0.6)^{2}$ so we can use partial fraction expansion:

$$
H\left(e^{-j \omega}\right)=\frac{A}{1-0.6 e^{-j \omega}}+\frac{B}{\left(1-0.6 e^{-j \omega}\right)^{2}}
$$

Hence,

$$
A-0.6 A e^{-j \omega}+B=1+e^{-j \omega} \Longrightarrow A=-\frac{5}{3}, B=\frac{8}{3}
$$

plugging in these values and taking the inverse FT we get

$$
h[n]=-\frac{5}{3}(0.6)^{n} u[n]+\frac{8}{3}(n+1)(0.6)^{n} u[n]=\left(0.6^{n}+\frac{8}{3} n(0.6)^{n}\right) u[n]
$$

Example 5. Let $S(t)$ be a real-valued signal for which $S(j \omega)=0$ when $|\omega|>1000 \pi$. Amplitude modulation is performed to produce the signal:

$$
r(t)=s(t) \sin (1000 \pi t)
$$

and the demodulation scheme depicted below is applied to $r(t)$ at the receiver end. Determine $y(t)$ assuming that the ideal lowpass filter has a cutoff frequency of 1000π and a passband gain of 1 .

Solution:

Let us denote by $x(t)$ the signal that is filtered by the ideal low pass filter

$$
x(t)=s(t) \sin (1000 \pi t) \cos (1000 \pi t)=\frac{1}{2} s(t) \sin (2000 \pi t)
$$

Taking the FT of $x(t)$ we get

$$
X(j \omega)=\frac{1}{4 j}(S(j(\omega-2000 \pi))-S(j(\omega+2000 \pi)))
$$

(since $\sin \theta=\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right)$ and we know that $e^{j \theta} g(t) \longleftrightarrow G(\omega-\theta)$.) Since $s(t)$ is bandlimited to 1000π it is easy to conclude that $X(j \omega)$ is non-zero only in the range $[-3000 \pi,-1000 \pi]$ and $[1000 \pi, 3000 \pi]$. Because the low-pass filterpasses frequency in the range from -1000π to $1000 \pi, Y(j \omega)=0$, and thus $y(t)=0$.

