Discussion Section \#2, 31 Jan 2014

Lillian Ratliff

1 Unit Impulse

The unit impulse (Dirac delta) has the following properties:

$$
\begin{aligned}
\delta(t) & =\left\{\begin{array}{cc}
0, & t \neq 0 \\
\infty, & t=0
\end{array}\right. \\
\int_{-\varepsilon}^{\varepsilon} \delta(t) d t & =1
\end{aligned}
$$

Remark 1. Important!: An ordinary function with is everywhere 0 except at a single point must have the integral 0 (in the Riemann integral sense). Thus, $\delta(t)$ cannot be an ordinary function and mathematically it is defined (in the weak sense) by

$$
\begin{equation*}
\int_{-\infty}^{\infty} \phi(t) \delta(t) d t=\phi(0) \tag{TF}
\end{equation*}
$$

where $\phi(t)$ is any regular function continuous at $t=0$. Note that (TF) is a symbolic expression and should be considered an ordinary Riemann integral. In this sense, $\delta(t)$ is often called a generalized function (distribution) and $\phi(t)$ is known as a test function.

Definition 1 (Delayed Delta).

$$
\begin{equation*}
\int_{-\infty}^{\infty} \phi(t) \delta\left(t-t_{0}\right) d t=\phi\left(t_{0}\right) \tag{DD}
\end{equation*}
$$

2 Convolution

Definition 2 (Convolution Integral).

$$
\begin{equation*}
y(t)=x(t) * h(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \tag{CI}
\end{equation*}
$$

Example 1. Show the following properties:

1. $x(t) * \delta(t)=x(t)$

Solution:

By (DD) and (CI) we have

$$
x(t) * \delta(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d \tau=\left.x(\tau)\right|_{\tau=t}=x(t)
$$

2. $x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)$

Solution:

Since $*$ is commutative and by (DD),

$$
x(t) * \delta\left(t-t_{0}\right)=\delta\left(t-t_{0}\right) * x(t)=\int_{-\infty}^{\infty} \delta\left(\tau-t_{0}\right) x(t-\tau) d \tau=\left.x(t-\tau)\right|_{\tau=t_{0}}=x\left(t-t_{0}\right)
$$

3. $x(t) * u(t)=\int_{-\infty}^{t} x(\tau) d \tau$

Solution:

Since

$$
u\left(t-t_{0}\right)= \begin{cases}1, & t>t_{0} \\ 0, & t<t_{0}\end{cases}
$$

we have

$$
x(t) * u(t)=\int_{-\infty}^{\infty} x(\tau) u(t-\tau) d \tau=\int_{-\infty}^{t} x(\tau) d \tau
$$

4. $x(t) * u\left(t-t_{0}\right)=\int_{-\infty}^{t-t_{0}} x(\tau) d \tau$

Solution:

Since

$$
u\left(t-\tau-t_{0}\right)= \begin{cases}1, & \tau<t-t_{0} \\ 0, & \tau>t-t_{0}\end{cases}
$$

we have

$$
x(t) * u\left(t-t_{0}\right)=\int_{-\infty}^{\infty} x(\tau) u\left(t-\tau-t_{0}\right) d \tau=\int_{-\infty}^{t-t_{0}} x(\tau) d \tau
$$

Example 2. Consider

$$
x(t)=u(t) \quad \text { and } \quad h(t)=e^{-\alpha t} u(t), \alpha>0
$$

Compute $y(t)$ using (CI).

Solution:

(a) Graph of $h(\tau)$

(b) Graph of $u(\tau)$

Figure 1: Graphs of Functions for Example 2

Figure 2: Graphs of Functions for Example 2

(a) Graph of $h(1-\tau)$

(b) Graph of $u(1-\tau)$

Figure 3: Graphs of Functions for Example 2

Functions $u(\tau)$ and $h(t-\tau)$ are shown in figures 2 and 3 for $t=1>0$ and $t=-1<0$. For $t<0, u(\tau)$ and $h(t-\tau)$ do not overlap, while for $t>0$, they overlap from $\tau=0$ to $\tau=t$. Hence, for $t<0, y(t)=0$. For $t>0$, we have

$$
y(t)=\int_{0}^{t} e^{-\alpha(t-\tau)} d \tau=e^{-\alpha t} \int_{0}^{t} e^{\alpha \tau} d \tau=e^{-\alpha t} \frac{1}{\alpha}\left(e^{\alpha t}-1\right)=\frac{1}{\alpha}\left(1-e^{-\alpha t}\right)
$$

Thus,

$$
y(t)=\frac{1}{\alpha}\left(1-e^{-\alpha t}\right) u(t)
$$

Example 3.

Figure 4: Example 3 graph of $x(\tau)$

Figure 5: Graphs of Functions for Example 2

Figure 6: Example 3 graph of $y(t)$
Consider

$$
h(t)=e^{-\alpha t} u(t) \quad \text { and } \quad x(t)=e^{\alpha t} u(-t), \alpha>0
$$

Figures 4 and 5 depict $x(\tau)$ and $h(t-\tau)$ for $t=1,-1$. It is clear from the pictures that for $t<0, x(\tau)$ and $h(t-\tau)$ overlap from $\tau=-\infty$ to $\tau=t$, while for $t>0$ they overlap from $\tau=-\infty$ to $\tau=0$. Hence, for $t<0$, we have

$$
y(t)=\int_{-\infty}^{t} e^{\alpha \tau} e^{-\alpha(t-\tau)} d \tau=e^{-\alpha t} \int_{-\infty}^{t} e^{2 \alpha \tau} d \tau=\frac{1}{2 \alpha} e^{\alpha t}
$$

For $t>0$ we have

$$
y(t)=\int_{-\infty}^{0} e^{\alpha \tau} e^{-\alpha(t-\tau)} d \tau=e^{-\alpha t} \int_{-\infty}^{0} e^{2 \alpha \tau} d \tau=\frac{1}{2 \alpha} e^{-\alpha t}
$$

Combining the above two cases we have

$$
y(t)=\frac{1}{2 \alpha} e^{-\alpha|t|}, \alpha>0
$$

which is depicted in Figure 6.

3 Linear Differential Equation

Figure 7: LDE example

Example 4. Write a differential equation that relates the output $y(t)$ and the input $x(t)$.

Solution:

Let $e(t)$ and $w(t)$ be the input and the output of the first integrator in Figure 7. Hence,

$$
e(t)=\frac{d w(t)}{d t}=-a_{1} w(t)-a_{2} y(t)+x(t)
$$

Since $w(t)$ is the input to the second integrator, we have

$$
w(t)=\frac{d y(t)}{d t}
$$

Hence,

$$
\frac{d^{2} y(t)}{d t^{2}}=-a_{1} \frac{d y(t)}{d t}-a_{2} y(t)+x(t)
$$

Example 5. Consider the CT system whose input and output are related by

$$
\frac{d y(t)}{d t}+a y(t)=x(t)
$$

where a is constant. Find $y(t)$ with the initial condition $y(0)=y_{0}$ and with input

$$
x(t)=K e^{-b t} u(t)
$$

Solution:

Let $y(t)=y_{p}(t)+y_{h}(t)$ where $y_{p}(t)$ is the particular solution and $y_{h}(t)$ is the homogeneous solution, i.e. it satisfies

$$
\begin{equation*}
\frac{d y_{h}(t)}{d t}+a y_{h}(t)=0 \tag{H}
\end{equation*}
$$

Assume that $y_{p}(t)=A e^{-b t}, t>0$. Substituting $y_{p}(t)$ into the given ODE, we have

$$
-b A e^{-b t}+a A e^{-b t}=K e^{-b t}
$$

from which we get

$$
A=\frac{K}{(a-b)} \quad \text { and } \quad y_{p}(t)=\frac{K}{a-b} e^{-b t}, t>0
$$

To obtain $y_{h}(t)$ we assume

$$
y_{h}(t)=B e^{s t}
$$

since the homogeneous solution will have this form. Substituting into (H) gives,

$$
s B e^{s t}+a B e^{s t}=(s+a) B e^{s t}=0
$$

so that $s=-a$ and $y_{h}(t)=B e^{-a t}$. Thus,

$$
y(t)=B e^{-a t}+\frac{K}{a-b} e^{-b t}
$$

Using the initial data we get

$$
B=y_{0}-\frac{K}{a-b}
$$

Thus,

$$
y(t)=\left(y_{0}-\frac{K}{a-b}\right) e^{-a t}+\frac{K}{a-b} e^{-b t}, t>0
$$

For $t<0$, we have $x(t)=0$ so that the original ode is just the homogeneous ode in (H). Thus, $y(t)=B e^{-a t}$ and using the initial data we get

$$
y(t)=y_{0} e^{-a t}, t<0
$$

4 LCCDE

Example 6. Consider a system S with input $x[n]$ and output $y[n]$ related according to the block diagram in Figure 8. The input $x[n]$ is multiplied by $e^{-j \omega_{0} n}$ and the product is passed through a stable LTI system with impulse

Figure 8: LDE example
response $h[n]$.

1. Is the system S linear?

Solution:

Yes.

$$
y[n]=h[n] *\left(e^{-j \omega_{0} n} x[n]\right)=\sum_{k=-\infty}^{\infty} e^{-j \omega_{0} k} x[k] h[n-k]
$$

Let $x[n]=a x_{1}[n]+b x_{2}[n]$, then

$$
\begin{aligned}
y[n] & =h[n] *\left(e^{-j \omega_{0} n}\left(a x_{1}[n]+b x_{2}[n]\right)\right) \\
& =\sum_{k=-\infty}^{\infty} e^{-j \omega_{0} k}\left(a x_{1}[n]+b x_{2}[n]\right) h[n-k] \\
& =a \sum_{k=-\infty}^{\infty} e^{-j \omega_{0} k} x_{1}[k] h[n-k]+b \sum_{k=-\infty}^{\infty} e^{-j \omega_{0} k} x_{2}[k] h[n-k] \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$

2. Is the system S time invariant?

Solution:

Let $x_{2}[n]=x\left[n-n_{0}\right]$, then

$$
\begin{aligned}
y_{2}[n]= & h[n] *\left(e^{-j \omega_{0} n} x_{2}[n]\right) \\
= & \sum_{k=-\infty}^{\infty} e^{-j \omega_{0}(n-k)} x_{2}[n-k] h[k] \\
& \sum_{k=-\infty}^{\infty} e^{-j \omega_{0}(n-k)} x\left[n-n_{0}-k\right] h[k] \\
& \neq y\left[n-n_{0}\right]
\end{aligned}
$$

So it is not time invariant.
3. Is the system S stable?

Solution:

Since the magnitude of $e^{-j \omega_{0} n}$ is always bounded by 1 and $h[n]$ is stable, a bounded input $x[n]$ will always produce a bounded input to the stable LTI system and therefore the output $y[n]$ will be bounded. Thus the system is stable.
4. Specify a system C such that the block diagram in Figure 9 represents an alternative way of expressing the input-output relationship of the system S.

Solution:

We can write $y[n]$ as follows:

$$
\begin{aligned}
y[n] & =h[n] *\left(e^{-j \omega_{0} n} x[n]\right) \\
& =\sum_{k=-\infty}^{\infty} e^{-j \omega_{0}(n-k)} x[n-k] h[k] \\
& =\sum_{k=-\infty}^{\infty} e^{-j \omega_{0} n} e^{j \omega_{0} k} x[n-k] h[k] \\
& =e^{-j \omega_{0} n} \sum_{k=-\infty}^{\infty} e^{j \omega_{0} k} x[n-k] h[k]
\end{aligned}
$$

System C should therefore be a multiplication by $e^{-j \omega_{0} n}$.

Figure 9: LDE example alternative

5 Fourier Series

Example 7. Determine the trigonometric Fourier series coefficients for a signal that is an impulse train with period T_{0}, i.e.

$$
\delta_{T_{0}}(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{0}\right)
$$

Solution:

Let

$$
\delta_{T_{0}}(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos \left(k \omega_{0} t\right)+b_{k} \sin \left(k \omega_{0} t\right)\right), \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

Since $\delta_{T_{0}}(t)$ is even, $b_{k}=0$ and since

$$
a_{k}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos \left(k \omega_{0} t\right) d t
$$

we have

$$
a_{k}=\frac{2}{T_{0}} \int_{-T_{0} / 2}^{T_{0} / 2} \delta(t) \cos \left(k \omega_{0} t\right) d t=\frac{2}{T_{0}}
$$

Thus, we get

$$
\delta_{T_{0}}(t)=\frac{1}{T_{0}}+\frac{2}{T_{0}} \sum_{k=1}^{\infty} \cos \left(k \omega_{0} t\right), \quad \omega_{0}=\frac{2 \pi}{T_{0}}
$$

