
EE120 - Fall’15 - Lecture 8 Notes1
1 Licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike
4.0 International License.Murat Arcak

23 September 2015

Phase Distortion in LTI Systems
Section 6.2 in Oppenheim & Willsky

The phase of the Fourier Transform ]X(ejω) is as important as the
magnitude |X(ejω)| in describing the features of the signal x[n].

Example: Recall x[−n] ←→ X(e−jω) = X∗(ejω) when x[n] is real.
Since |X(ejω)| = |X∗(ejω)|, the DTFT of x[n] and x[−n] differ only by
their phase. This shows that phase difference alone can distinguish
two signals significantly.

Consider an LTI system whose frequency response can be written as:

H(ejω) = A(ejω)e−jαω

where A(ejω) is real and nonnegative. Such a system is called “linear
phase" because the phase ]H(ejω) = −αω is a linear function of ω.

Linear phase filters are desirable because each frequency component
of a signal passing through them is delayed by the same duration, α:

ejωn → H(ejω) → H(ejω)ejωn = A(ejω)ejω(n−α)

By contrast, an LTI system whose phase ]H(ejω) depends nonlin-
early on ω delays each frequency component differently and can
cause severe distortion. See page 3 for an example of such phase
distortion.

The linear phase property is very restrictive in practice. The re-
laxed version below maintains the essential benefits and is easy to
achieve in FIR filter design:

Generalized Linear Phase Systems

An LTI system with frequency response H(ejω) is called “general-
ized linear phase” if we can find a real-valued function A(ejω) and
constants α, β, such that:

H(ejω) = A(ejω)︸ ︷︷ ︸
real, but sign

change allowed

e−jαω+jβ (1)

Note that ]H(ejω) = β− αω for each ω such that A(ejω) > 0.
If the sign of A(ejω) changes at a frequency ω, then ]H(ejω) changes
discontinuously by π.
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Example: If h[−n] = h[n] (even symmetric), then H(ejω) is real. We
can take A(ejω) = H(ejω), α = β = 0.

−N1 N1

n

h[n] DTFT←→

2π

ω

H(ejω) = A(ejω)

2π

−π
slope= α = 0 except
at discontinuities

ω

]H(ejω)

Example: If h[n] = h0[n− N1] where h0[n] is even symmetric, then

H(ejω) = H0(ejω)e−jωN1 . (2)

Since H0(ejω) is real, take A(ejω) = H0(ejω), α = N1, β = 0.

The windowed FIR filters in the last lecture have this form, there-
fore they are generalized linear phase:

h0[n] =
sin ωcn

πn︸ ︷︷ ︸
impulse resp.
of ideal LPF

· w[n]︸︷︷︸
window

(rectangular,
Hamming, etc.)

(even symmetric). (3)

Frequency response of a Hamming windowed filter from last lecture:
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Example: If h[−n] = −h[n] (odd symmetric) then H(ejω) is purely
imaginary. Let A(ejω) = −jH(ejω) = H(ejω)e−jπ/2 (real).

H(ejω) = A(ejω)ejπ/2 → α = 0, β = π/2. (4)
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Figure 1: Phase distortion illustrated on a signal x[n] (middle plot) with three dominant frequency components (shown

in the plot of |X(ejω)| underneath). This signal is applied to a LTI system with highly nonlinear phase, as seen from

the plot for - d
dω]H(ejω) (top). In the output y[n] (bottom), the order of the the low and middle frequency components

are swapped because the low frequency component incurred a large delay. The high frequency component (ω = 0.8π)

is filtered out because H(ej0.8π) = 0 (the plot second from the top). See Section 5.1.2 in Oppenheim & Schafer, Discrete-

Time Signal Processing, 3rd ed., Prentice Hall, for the construction of the LTI system in this example.
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Two Dimensional (2D) Fourier Transform

2D CTFT Analysis Equation:

X(jω1, jω2) =
∫ ∞

−∞

∫ ∞

−∞
x(t1, t2)e−jω1t1 e−jω2t2 dt1dt2 (5)

2D CTFT Synthesis Equation:

x(t1, t2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
X(jω1, jω2)ejω1t1 ejω2t2 dω1dω2 (6)

2D DTFT Analysis Equation:

X(ejω1 , ejω2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

x[n1, n2]e−jω1n1 e−jω2n2 (7)

Note that this is periodic with period (2π, 2π):

X(ejω1 , ejω2) = X(ej(ω1+2π), ejω2) = X(ejω1 , ej(ω2+2π)).

2D DTFT Synthesis Equation:

x[n1, n2] =
1

(2π)2

∫
2π

∫
2π

X(ejω1 , ejω2)ejω1n1 ejω2n2 dω1dω2 (8)

Absolute integrability/summability conditions for convergence:∫ ∞

−∞

∫ ∞

−∞
|x(t1, t2)|dt1dt2 < ∞ (continuous time) (9)

∞

∑
n1=−∞

∞

∑
n2=−∞

|x[n1, n2]| < ∞ (discrete time). (10)

Example: x[n1, n2] = δ[n1, n2] := δ[n1]δ[n2].

X(ejω1 , ejω2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

δ[n1, n2]e−jω1n1 e−jω2n2 = e−jω10e−jω20 = 1

Example: x[n1, n2] = an1 bn2 u[n1, n2], |a| < 1, |b| < 1.

X(ejω1 , ejω2) =
∞

∑
n1=0

∞

∑
n2=0

an1 bn2 e−jω1n1 e−jω2n2

=
∞

∑
n1=0

an1 e−jω1n1
∞

∑
n2=0

bn2 e−jω2n2

=
1

1− ae−jω1

1
1− be−jω2
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Separability Property of the 2D DTFT:

If x[n1, n2] = x1[n1]x2[n2] then X(ejω1 , ejω2) = X1(ejω1)X2(ejω2) as in
the examples above. A similar property holds for the 2D CTFT.
Proof:

X(ejω1 , ejω2) =
∞

∑
n1=−∞

∞

∑
n2=−∞

x1[n1]x2[n2]e−jω1n1 e−jω2n2

=
∞

∑
n1=−∞

x1[n1]e−jω1n1

︸ ︷︷ ︸
= X1(ejω1)

∞

∑
n2=−∞

x2[n2]e−jω2n2

︸ ︷︷ ︸
= X2(ejω2)

2D Systems

x[n1, n2]→ → y[n1, n2]

When the input is δ[n1, n2] the output is called the impulse response
and denoted h[n1, n2] as in 1D systems.

Example: 2D moving average filter

y[n1, n2] =
1
9

1

∑
k1=−1

1

∑
k2=−1

x[n1 − k1, n2 − k2]

(n1,n2) −−−→ 3× 3 sliding window

h[n1, n2] =

{
1
9 −1 ≤ n1 ≤ 1 and − 1 ≤ n2 ≤ 1
0 otherwise.

2D Convolution:

If the system is linear shift-invariant, then:

y[n1, n2] = h[n1, n2] ∗ x[n1, n2]

=
∞

∑
m1=−∞

∞

∑
m2=−∞

h[m1, m2]x[n1 −m1, n2 −m2]

=
∞

∑
m1=−∞

∞

∑
m2=−∞

x[m1, m2]h[n1 −m1, n2 −m2].
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Convolution Property of the 2D DTFT

h[n1, n2] ∗ x[n1, n2] ←→ H(ejω1 , ejω2)X(ejω1 , ejω2) (11)

Example: 2D separable ideal low pass filter

H(ejω1 , ejω2) = 1 in the shaded regions of the (ω1, ω2)-plane below
and = 0 otherwise:

ω1ωc1

ωc2

•(2π,0)

•(2π,2π)•(0,2π)

ω2

We can write this frequency response as:

H(ejω1 , ejω2) = H1(ejω1)H2(ejω2)

where

Hi(ejωi ) =

{
1 |ωi| ≤ ωci

0 ωci < |ωi| ≤ π
i = 1, 2.

Then, from the separability property,

h[n1, n2] =
sin ωc1 n1

πn1

sin ωc2 n2

πn2

which is depicted below for ωc1 = ωc2 = 0.2π.
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Example: 2D circularly symmetric ideal low pass filter

H(ejω1 , ejω2) = 1 in the shaded regions of the (ω1, ω2)-plane below
and = 0 otherwise:

ω1
ωc

ωc

•(2π,0)

•(2π,2π)•(0,2π)

ω2

In the region [−π, π]× [−π, π], this can be expressed as:

H(ejω1 , ejω2) =

 1
√

ω2
1 + ω2

2 ≤ ωc

0
√

ω2
1 + ω2

2 > ωc.

The 2D DTFT Synthesis Equation yields:

h[n1, n2] =
ωc

2π
√

n2
1 + n2

2

J1

(
ωc

√
n2

1 + n2
2

)

where J1(·) is the Bessel function of the first kind and first order.2 2 See mathworld.wolfram.com for a
description of Bessel functions of the
first kind. The Matlab command to
evaluate J1(·) is besselj(1,·) where the
first argument specifies the order.

Note that h[n1, n2] is not separable. However, like the frequency
response H(ejω1 , ejω2), it exhibits circular symmetry. See the figure
below for a depiction of h[n1, n2] for ωc = 0.2π.

30
20

10
0

-10
-20

-30-30

-20

-10

0

10

20

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

30

n1
n2

h[n1, n2]

mathworld.wolfram.com


ee120 - fall’15 - lecture 8 notes 8

Projection-Slice Theorem

Consider the following "projection" of the 2D function x(t1, t2) along
the t2 axis:

x0(t1) ,
∫ ∞

−∞
x(t1, t2)dt2.

Then, the 1D CTFT of x0(t1) is related to the 2D CTFT of x(t1, t2) by:

X0(jω1) = X(jω1, jω2)|ω2=0 .

This is because:

X(jω1, jω2)|ω2=0 =
∫ ∞

−∞

∫ ∞

−∞
x(t1, t2)e−jω1t1 e−j0t2 dt1dt2

=
∫ ∞

−∞

(∫ ∞

−∞
x(t1, t2)dt2

)
e−jω1t1 dt1

=
∫ ∞

−∞
x0(t1)e−jω1t1 dt1 = X0(jω1).

A generalization of this property to projections along any direction
is known as the projection-slice theorem and is illustrated in the figure
below. (Projection along the t2 axis above is the special case θ = 0.)

1D F.T.

project

slice

t1

t2

θ θ ω1

ω2

This theorem is crucial in tomography where one collects projections
at many angles about a 2D object. The 1D Fourier Transform of each
such "shadow" corresponds to a slice of the 2D Fourier Transform.
One can thus obtain the 2D Fourier Transform by combining these
slices and then reconstruct x(t1, t2) from the synthesis equation.
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