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Discrete Time Fourier Transform (DTFT) Continued

Finding the Frequency Response from a Difference Equation
Section 5.8 in Oppenheim & Willsky

N

∑
k=0

aky[n− k] =
M

∑
k=0

bkx[n− k] (1)

Substitute x[n] = δ[n], and y[n] = h[n]:

N

∑
k=0

akh[n− k] =
M

∑
k=0

bkδ[n− k] (2)

Take the Fourier Transform of both sides (recall that δ[n]↔ 1):(
N

∑
k=0

ake−jωk

)
H(ejω) =

M

∑
k=0

bke−jωk (3)

H(ejω) =
∑M

k=0 bke−jωk

∑N
k=0 ake−jωk

(4)

We can find the impulse response h[n] from the inverse Fourier trans-
form of H(ejω):

Example:

y[n]− 3
4

y[n− 1] +
1
8

y[n− 2] = 2x[n] (5)

Frequency response:

H(ejω) =
2

1− 3
4 e−jω + 1

8 e−2jω
=

2
(1− 1

2 e−jω)(1− 1
4 e−jω)

Partial fraction expansion:

H(ejω) =
4

1− 1
2 e−jω

− 2
1− 1

4 e−jω

Thus, the impulse response is:

h[n] = 4
(

1
2

)n
u[n]− 2

(
1
4

)n
u[n]

Example: Describe the LTI system with impulse response h[n] =

αnu[n], |α| < 1, with a difference equation.

H(ejω) =
1

1− αe−jω (6)
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which is (4) with b0 = 1, α0 = 1, and a1 = −α. Thus,

y[n]− αy[n− 1] = x[n].

Example: Find the difference equation describing a LTI system whose
impulse response is:

h[n] =
(

1
2

)n
u[n] +

1
2

(
1
4

)n
u[n].

Convolution Property of DTFT
Section 5.4 in Oppenheim & Willsky

y[n] = h[n] ∗ x[n]←→ Y(ejω) = H(ejω)X(ejω) (7)

Example:

h[n] = αnu[n] |α| < 1 ↔ H(ejω) =
1

1− αe−jω

x[n] = βnu[n] |β| < 1 ↔ X(ejω) =
1

1− βe−jω

Y(ejω) =
1

(1− αe−jω)(1− βe−jω)

If α 6= β, employ partial fraction expansion:

Y(ejω) =
A

1− αe−jω +
B

1− βe−jω ,

with A + B = 1 and Aβ + Bα = 0. Then, A = α
α−β and B = −β

α−β .
Then,

y[n] =
α

α− β
αnu[n]− β

α− β
βnu[n] =

1
α− β

(
αn+1 − βn+1

)
u[n]

If α = β, then:

Y(ejω) =
1

(1− αe−jω)2 =

time-shift︷︸︸︷
ejω

−αj
d

dω

(
1

1− αe−jω

)
︸ ︷︷ ︸
↔ 1

j nαnu[n] 2

2 by the differentiation property:

nx[n]↔ j dX(ejω )
dωThen,

y[n] =
1
α
(n + 1)αn+1u[n + 1] = (n + 1)αnu[n + 1] = (n + 1)αnu[n]

where we replaced u[n + 1] with u[n] since (n + 1)αn = 0 for n = −1.
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Example: Determine the function performed by the block diagram
below where HLP is a low-pass filter with cutoff frequency ωc < π/2.

+

x x

x[n] y[n]

(−1)n (−1)n

w1[n] w2[n] w3[n]

w4[n]

HLP(ejω)

HLP(ejω)

W1(ejω) = X(ej(ω−π))

W2(ejω) = HLP(ejω)X(ej(ω−π))

W3(ejω) = HLP(ej(ω−π))X(ejω)

W4(ejω) = HLP(ejω)X(ejω)

Adding W3(ejω) and W4(ejω):

Y(ejω) = (HLP(ejω) + HLP(ej(ω−π)))︸ ︷︷ ︸X(ejω) (8)

−π ωc π

bandstop filter

Multiplication Property

Section 5.5 in Oppenheim & Willsky

x1[n]x2[n]←→
1

2π

∫
2π

X1(ejθ)X2(ej(ω−θ))dθ 3 (9)

Proof: Apply synthesis equation to the right-hand side: 3 ”periodic convolution”

1
2π

∫
2π

1
2π

∫
2π

X1(ejθ)X2(ej(ω−θ))dθejωndω

=
1

2π

∫
2π

X1(ejθ)
1

2π

∫
2π

X2(ej(ω−θ))ejωndω︸ ︷︷ ︸
=ejθnx2[n]

4

dθ

= x2[n]
1

2π

∫
2π

X1(ejθ)ejθndθ︸ ︷︷ ︸
=x1[n]

= x1[n]x2[n].

4 from the frequency shift property
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Example: Interpret the value at n = 0 as
x[0] = x1[0]x2[0] = 3

4
1
2

x[n] =
sin( 3π

4 n)
πn︸ ︷︷ ︸

,x1[n]

· sin(π
2 n)

πn︸ ︷︷ ︸
,x2[n]

Use the multiplication property to calculate X(ejω). First note that:

sin(ωcn)
πn

←→
. . .. . .

−2π ωc 2π

1

Easy to show by applying the synthesis equation:

1
2π

∫ ωc

−ωc
ejωndω =

1
2π

1
jn

ejωn
∣∣∣∣ωc

−ωc

=
1

πn
1
2j
(ejωcn − e−jωcn)︸ ︷︷ ︸

=sinωcn

By the multiplication property,

X(ejω) =
1

2π

∫
2π

X1(ejθ)X2(ej(ω−θ))dθ (10)

i.e. periodic convolution of rectangular pulses in frequency domain:

X1(ejω)

X2 (ejω)

−3π
4
−π

2
3π
4

π
2

−π π

ω = 0

ω = π/4

ω = π/2

ω = 3π/4

ω = π

−X1(ejθ)
−X2(ej(ω−θ))π

π

3π/4

π/2

π
4

π
4

ω

θ

θ

θ

θ

θ
integration interval

X(ejω)
1/2
1/4

0 π
4

π
2

3π
4 π 2π ω



ee120 - fall’15 - lecture 7 notes 5

FIR Filter Design by Windowing

Ideal low-pass filter:

h[n] =
sin(ωcn)

πn
←→ H(ejω) =

. . .. . .

−2π ωc 2π

1

To obtain a FIR filter truncate the ideal impulse response:

ĥ[n] = h[n]w[n], where w[n] =

{
1 |n| ≤ N1

0 otherwise.

What is the effect of truncation on the frequency response? From the
last lecture:

W(ejω) =
sin (ω(N1 + 1/2))

sin(ω/2)

2π2π
2N 1 + 1

2N 1 + 1

main lobe

side lobes

Thus, Ĥ(ejω) =
1

2π

∫
2π

H(ejθ)W(ej(ω−θ))dθ

See the animation on the last page.

θ

H(ejθ)

ω

W(ej(ω−θ))↗

H(ejω)
Ĥ(ejω)↗
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Gibbs Phenomenon and Tapered Windows

Note from the figure below that Ĥ(ejω) exhibits oscillations near the
discontinuities of H(ejω) and their amplitudes do not decrease as N1

is increased. This is known as the Gibbs Phenomenon.

H(ejω)
Ĥ(ejω)

ω ω

ω ω

N1 = 1 N1 = 2

N1 = 3 N1 = 9

These oscillations are caused by the sizable side lobes of W(ejω) (high
frequency components) which are due to the abrupt change from 0 to
1 in w[n].

”Tapered” windows mitigate this problem, e.g., the triangular
(Bartlett) window:

w[n] =

{
1− |n|N1

if |n| ≤ N1

0 otherwise.

Other tapered windows exist (Hanning, Hamming, Blackman, etc.)
and are depicted in Figure 1. Although the differences between these
windows may not be appreciable in time domain, their Fourier Trans-
forms have significant differences as shown in Figure 2. Note the
tradeoff between main lobe width︸ ︷︷ ︸

must be small for
sharp transition

from passband to
stopband

& side lobe amplitude︸ ︷︷ ︸
must be small to

reduce ripples

in Figure 2.
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Figure 1: Tapered windows of type
Bartlett, Hanning, Hamming, and
Blackman for N1 = 25 superimposed.

Summary

To obtain a FIR filter truncate the ideal filter’s impulse response h[n]
with one of the window functions w[n]:

ĥ[n] = h[n]w[n].

The new impulse response is zero outside of n ∈ {−N1, · · · , N1} but
not yet causal. To make it causal, shift to the right by N1:

ĥ[n− N1]←→ e−jωN1 Ĥ(ejω)

which does not change the magnitude of the frequency response,
only the phase. Finally, ĥ[n] must be scaled by a constant to obtain
∑n ĥ[n] = 1, so the dc gain is Ĥ(ej0) = 1.

FIR implementation:

y[n] = b0x[n] + b1x[n− 1] + ... + bMx[n−M]

where b0, ..., bM are the impulse response coefficients: bn = ĥ[n− N1].

MATLAB command for design:
fir1(M,ωc,w) returns a vector of the coefficients b0, ..., bM above
M: filter order (2N1 above)
ωc: desired cutoff frequency divided by π (so the frequency range
[0, π] is normalized to [0, 1])
w: vector of length M + 1 for the values of the window function w[n];
enter boxcar(M + 1) for a rectangular window, and bartlett(M +

1), hamming(M + 1), hanning(M + 1), blackman(M + 1) for others.
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Figure 2: The magnitude of the Fourier
Transform W(ejω) (in dB) for the rectan-
gular, Bartlett, Hanning, Hamming, and
Blackman windows. Here each window
function in Figure 1 is scaled such that
∑n w[n] = 1, so W(ej0) = 1 = 0 dB.
Note that the tapered windows progres-
sively reduce the side lobe amplitudes
in the order they are presented. This
has the desired effect of reducing rip-
ples in the frequency response of the
truncated filter. However, the main lobe
width increases which has a negative
effect: the transition from passband to
stopband will be slower for the filter
truncated with the respective window.
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Example: B=fir1(50,0.2,hamming(51)) returns the coefficients of
a FIR low pass filter of order M = 50 with cutoff frequency 0.2π,
truncated with a Hamming window.
stem(0:50,B) plots the impulse response:
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freqz(B) plots the frequency response:
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