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Discrete Time Fourier Transform (DTFT) Continued

Finding the Frequency Response from a Difference Equation
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N M
Y aghn—k] =) bed[n — k] (2)
k=0 k=0
Take the Fourier Transform of both sides (recall that §[n] <> 1):
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We can find the impulse response h[n] from the inverse Fourier trans-
form of H(e/¥):
Example:
3 1
yln] = gyl = 1]+ gyln — 2] = 2x[n] (5)
Frequency response:
2 2

)= 1= Sejo 4 fe2w (11— ge i) (1— e i)

Partial fraction expansion:
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H(e) = — = - — =
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Thus, the impulse response is:

h[n] = 4 (;)nu[n] i (i)nu[n]

Example: Describe the LTI system with impulse response hin] =
a"uln], |a| < 1, with a difference equation.

H(e) = ﬁ (6)
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which is (4) with by =1, g = 1, and a1 = —a. Thus,
y[n] —ay[n —1] = x[n].

Example: Find the difference equation describing a LTI system whose
impulse response is:

Convolution Property of DTFT
Section 5.4 in Oppenheim & Willsky

y[n] = hin]  x[n] «— Y(e/) = H(e/) X (e/) @)
Example:
W) = a'uln] || <1 ¢ H(e®) = ﬁ
xn] = Buln] |Bl<1 X@%zl_;%w
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If « # B, employ partial fraction expansion:
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with A+ B = 1and A+ Ba = 0. Then, A = %; and B = —f

x—p x—pB"
Then,
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in] = g uln) = Epptul] = = (8= B )l

If « = B, then:
time-shift
Y(ej“’) — 1 — ejw ﬂ 1
S (1—ae )2 —af dw \1—ae @
H%na”u[n] 2
*by the differentiation property:

Then nax[n] o G

y[n] = %(”+1)0¢”+1u[n+ 1] = (n+Da"uln+1] = (n + a"uln]

where we replaced u[n + 1] with u[n] since (n +1)a" =0 for n = —1.
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Example: Determine the function performed by the block diagram
below where Hjp is a low-pass filter with cutoff frequency w, < 7r/2.

(=1)"
Hé)_. Hip(e)
w1 [n]
x[n] —»
> HLp(ef“’)
Wi(e) = X(e/@=)
Wa(el) = Hpp(e/)X(e/ ™)
Ws(el) = Hpp(e/ ) X(e)
Wy(e”) = Hpp(e)X(e*)
Adding W3(e/¥) and Wy (e/“):
Y(e) = (Hup(el) + Hyp(el ™)) X () ®

bandstop filter

—Tr We T

Multiplication Property

Section 5.5 in Oppenheim & Willsky
1 ‘ ‘
xifnlan] «— 5 / X1 ()Xo (/=) | 3 ©)
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Proof: Apply synthesis equation to the right-hand side: 3 “periodic convolution”

1 1 . . A
= = jo j(w—0) jeon
7o /M T /anl(e )Xz (e )dOe/ " dew

1 o1 , ,
= — jo j(w=0)piwn
7o /%Xl(e )27r /Zan(e Vel dwdo

=el%xy[n] 4
1 L
= ol /2 Xa(e)e™d0 = 1 [n]x ]
:xl["]

4 from the frequency shift property
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(37 i (T
Example: x[n] = Sm(Tn> . Sln(fn) Interpret the value at n = 0 as
E— n mn x[0] = x1[0]x2[0] = §3
—
A A
=x1[n] =x2[n]

Use the multiplication property to calculate X (e/“). First note that:
1

sinlwer) o N I

—
n

=27 We 2

Easy to show by applying the synthesis equation:

We
i /wc ejwnda; = L.lejwn = Ll_(eijn — e_ijn)
27T J -, 27 jn n 2j
=sinwen
By the multiplication property,
. 1 ‘ .
X(e) = 5 [ Xa(e)Xa(el 0o (10)
i.e. periodic convolution of rectangular pulses in frequency domain:
1 X
Xa((e/)
T a3 ¥ W
w=20 .9)
_Xl (e/
7T X (el@=0))
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w=7/2 A
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FIR Filter Design by Windowing

Ideal low-pass filter:
1

sin(wen)

To obtain a FIR filter truncate the ideal impulse response:

~ 1 |1’Z’ < Nl
h = I’l ’ h = -
] nfeln], where wln] { 0 otherwise.
What is the effect of truncation on the frequency response? From the

last lecture: i (w(Ny 1 1/2))
joy _ Sin (w(Ny
W) sin(w/2)

main lobe

2N7 +1

side lobes

Thus,

See the animation on the last page.
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Gibbs Phenomenon and Tapered Windows

Note from the figure below that H(e/“’) exhibits oscillations near the
discontinuities of H(e/*’) and their amplitudes do not decrease as Nj
is increased. This is known as the Gibbs Phenomenon.

Ny =1 H(ef) Ny =2

H(elv)

[ =y : - . [

w w

These oscillations are caused by the sizable side lobes of W(e/) (high
frequency components) which are due to the abrupt change from o to
1 in wn|.

"Tapered” windows mitigate this problem, e.g., the triangular
(Bartlett) window:

bl o<
w[n] _ 1 N if |Tl| 7.N1
0 otherwise.

Other tapered windows exist (Hanning, Hamming, Blackman, etc.)

and are depicted in Figure 1. Although the differences between these

windows may not be appreciable in time domain, their Fourier Trans-

forms have significant differences as shown in Figure 2. Note the

tradeoff between main lobe width & side lobe amplitude in Figure 2.
—_——

must be small for
sharp transition

from passband to
stopband

must be small to
reduce ripples
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Summary

To obtain a FIR filter truncate the ideal filter’s impulse response h[n]
with one of the window functions w|n|:

The new impulse response is zero outside of n € {—Ny,---,N;j} but
not yet causal. To make it causal, shift to the right by Nj:

hln — Ny] «— e TN F (o)

which does not change the magnitude of the frequency response,
only the phase. Finally, /i[n] must be scaled by a constant to obtain
Y., i[n] = 1, so the dc gain is H(e/*) = 1.

FIR implementation:
y[n] = box[n] + byx[n — 1] + ... + byx[n — M]

where by, ..., by are the impulse response coefficients: b, = fl[n — Nl].

MATLAB command for design:

firl(M,w.,w) returns a vector of the coefficients by, ..., by above
M: filter order (2N; above)

we: desired cutoff frequency divided by 7t (so the frequency range
[0, 7] is normalized to [0, 1])

w: vector of length M + 1 for the values of the window function w(n];
enter boxcar(M + 1) for a rectangular window, and bartlett(M +
1), hamming (M + 1), hanning(M + 1), blackman (M + 1) for others.

Figure 1: Tapered windows of type
Bartlett, Hanning, Hamming, and
Blackman for N; = 25 superimposed.
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Figure 2: The magnitude of the Fourier
Transform W(e/¥) (in dB) for the rectan-
gular, Bartlett, Hanning, Hamming, and
Blackman windows. Here each window
function in Figure 1 is scaled such that
Y, wn = 1,50 W) =1 =0dB.
Note that the tapered windows progres-
sively reduce the side lobe amplitudes
in the order they are presented. This
has the desired effect of reducing rip-
ples in the frequency response of the
truncated filter. However, the main lobe
width increases which has a negative
effect: the transition from passband to
stopband will be slower for the filter
truncated with the respective window.
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Example: B=firl(50,0.2,hamming(51)) returns the coefficients of
a FIR low pass filter of order M = 50 with cutoff frequency 0.27,
truncated with a Hamming window.

stem(0:50,B) plots the impulse response:
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