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Fourier Series for Continuous-Time Periodic Signals
Section 3.3 in Oppenheim & Willsky

Recall:

ejθ = cos θ + j sin θ

(ejθ)∗ = e−jθ = cos θ − j sin θ

}
cos θ = 1

2
(
ejθ + e−jθ)

sin θ = 1
2j
(
ejθ − e−jθ)

and ejω0t = cos ω0t + j sin ω0t is a periodic signal with period T = 2π
ω0

.

Fourier Series represents a periodic signal x(t + T) = x(t) ∀t as a
weighted sum of sinusoidals ejkω0t k = 0,∓1,∓2, ...

x(t) =
∞

∑
k=−∞

akejkω0t ω0 = 2π
T (synthesis equation) (1)

k = 0: akejkω0t ≡ a0 (”dc component”)
k = ∓1: fundamental frequency (”first harmonic”)
k = ∓2: ”second harmonic”

Example: x(t) = 1 +
1
2

cos(2πt)︸ ︷︷ ︸
= 1

4 ej2πt

+ 1
4 e−j2πt

+ sin(4πt)︸ ︷︷ ︸
= 1

2j ej4πt

− 1
2 e−j4πt

+
2
3

cos(6πt)︸ ︷︷ ︸
= 1

3 ej6πt

+ 1
3 e−j6πt

(2)

then a0 = 1, a1 = a−1 = 1
4 , a2 = −a−2 = 1

2j , a3 = a−3 = 1
3 .

Property: For a real signal x(t) = x∗(t), ak = a∗−k.

Proof: Follows from the "conjugate symmetry" property: If x(t) has
Fourier series coefficient ak, then x∗(t) has Fourier series coefficients
bk = a∗−k. If x(t) is real, then x(t) = x∗(t); therefore, ak = bk = a∗−k.

How to find the Fourier Series coefficients ak?

Multiply both sides of the synthesis equation (1) with e−jnω0t and
integrate from 0 to T = 2π

ω0
:

∫ T

0
x(t)e−jnω0tdt =

∞

∑
k=−∞

ak

(∫ T

0
ej(k−n)ω0tdt

)
︸ ︷︷ ︸
=

 T if k = n
0 if k 6= n︸ ︷︷ ︸

=Tan

(3)
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Therefore:

an =
1
T

∫ T

0
x(t)e−jnω0tdt (analysis equation) (4)

In particular, a0 = 1
T
∫ T

0 x(t)dt (average of x(t) over one period).

Example: Periodic Square Wave

1

−T1 T1 T

. . . . . .

t

x(t)

For k = 0,

a0 =
1
T

∫ T1

−T1

dt =
2T1

T
(5)

For k 6= 0,

ak =
1
T

∫ T1

−T1

e−jkω0tdt =
1
T
−1

jkω0
e−jkω0t

∣∣∣∣T1

−T1︸ ︷︷ ︸
=ejkω0T1−e−jkω0T1
=−2jsin(kω0T1)

(6)

=
2

kω0T
sin(kω0T1) =

1
kπ

sin(2πk T1
T ) (7)

Discrete-Time Periodic Signals

A discrete-time signal x[n] is periodic if there exists integer N 6= 0 s.t.

x[n + N] = x[n] for all n. (8)

Question: Is x[n] = cos(ω0n) periodic for any ω0?
Answer: No. It is periodic only when ω0/π is rational. To find the
fundamental period N, find the smallest integers M, N such that

ω0N = 2πM (9)

Examples:
1. cos(n) is not periodic;
2. cos( 5π

7 n), N = 14;
3. cos(π

5 n), N = 10;
4. cos( 5π

7 n) + cos(π
5 n), N = s.c.m.{14, 10} = 70.
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Question: Which one is a higher frequency, ω0 = π or ω0 = 3π
2 ?

Answer: ω0 = π

1 1

n n

cos(πn) cos( 3π
2 n) = cos(π

2 n)

N = 2 N = 4

In discrete time ω = π is the highest frequency, as depicted below.
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Discrete-Time Fourier Series

The complex exponential signal

ejω0n = cos(ω0n) + jsin(ω0n)

is periodic if ω0N = 2πM for some integers M, N:

ejω0(n+N) = ejω0n ejω0 N︸ ︷︷ ︸
=ej2πM=1

= ejω0n (10)

The Fourier Series expresses the periodic sequence x[n + N] = x[n] as
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a linear combination of

Φk[n] , ejkω0n, k = 0,∓1,∓2, ..., ω0 = 2π
N (11)

Key difference between CT and DT:

ej(k+N)ω0n = ejkω0n (12)

because ejNω0n = ej2πMn = 1. Therefore,

Φk[n] = Φk+N [n] = Φk+2N [n] = ... (13)

and N independent functions Φk[n] (e.g., Φ0[n], Φ1[n], ..., ΦN−1[n]) are
enough for the Fourier Series. We use the finite series

x[n] = ∑
k=〈N〉

akΦk[n] (Synthesis Equation) (14)

where k = 〈N〉 means any set of N successive integers: k = 0, 1, ..., N−
1, or k = 1, 2, ..., N, or other choices.

Example: For N = 6, Φk[n] = ejk 2π
6 n

Φ1[3]

Φ1[2]

Φ1[4]

Φ1[1] = Φ1[7]

Φ1[0] = Φ1[6]

Φ1[5]

Φ2[1]

Φ2[2]

Φ2[0] = Φ2[3]

Re

Im

Re

Imk = 1 k = 2

Φ3[1]

Φ3[0] = Φ3[2]

Φ6[0] =

= Φ6[1] = ...

(or Φ0[n] ≡ 1)

Re

Im

Re

Imk = 3 k = 6

Properties of Φk[n]:

1. Periodicity in n: Φk[n + N] = Φk[n];
2. Periodicity in k: Φk+N [n] = Φk[n];
3.

∑
n=〈N〉

Φk[n] =

{
N if k = 0,∓N,∓2N, ...
0 otherwise

(15)

4. Φk[n] ·Φm[n] = Φk+m[n] (follows from definition Φk[n] = ejk 2π
N n)
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Finding the Fourier Series coefficients ak:

Multiply both sides of (14) by Φ−m[n] and sum over n = 〈N〉:

∑
n=〈N〉

x[n]Φ−m[n] = ∑
n=〈N〉

∑
k=〈N〉

akΦk−m[n] (16)

= ∑
k=〈N〉

ak ∑
n=〈N〉

Φk−m[n]︸ ︷︷ ︸
=

 N if k = m(modN)

0 otherwise

(17)

= Nam (18)

Replace m→ k:

ak =
1
N ∑

n=〈N〉
x[n]e−j 2π

N kn (Analysis Equation) (19)

Summary:

CT DT

Synthesis x(t) =
∞

∑
k=−∞

akejk 2π
T t x[n] = ∑

k=〈N〉
akejk 2π

N n

Analysis ak =
1
T

∫
T

x(t)e−jk 2π
T t ak =

1
N ∑

n=〈N〉
x[n]e−jk 2π

N n

Example:

x[n] = 1 + sin
(

2π

10
n
)

︸ ︷︷ ︸
= 1

2j ej
2π
10 n

− 1
2j e−j

2π
10 n

+ cos
(

4π

10
n +

π

4

)
︸ ︷︷ ︸

= 1
2 ej

π
4 ej

4π
10 n

+ 1
2 e−j

π
4 e−j

4π
10 n

N = 10

= 1 +
1
2j

Φ1[n]−
1
2j

Φ−1[n] +
1
2

ej π
4 Φ2[n] +

1
2

e−j π
4 Φ−2[n]

If we choose 〈N〉 to be {0, 1, 2, ..., 9}, then

a0 = 1, a1 = 1
2j , a2 = 1

2 ej π
4 , a3 = a4 = a5 = a6 = a7 = 0, (20)

a8 = 1
2 e−j π

4 , a9 = − 1
2j (21)

Note: As in CT, x[n] real implies that a−k = a∗k . Combined with the

periodicity of coefficients in DT (aN−k = a−k): aN−k = a∗k .
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Example: Rectangular pulse train

1

−N1 N1 N

. . . . . .

n

x[n]

For the special case N1 = 0 ("impulse train"):

ak =
1
N ∑

n=〈N〉
x[n]e−jk 2π

N n =
1
N

x[0]e−jk 2π
N 0 =

1
N
∀k.

Derive the following for N1 6= 0:

ak =

{ 2N1+1
N k = 0

1
N

sin(kπ(2N1+1)/N)
sin(kπ/N)

k 6= 0.
(22)

The figure below shows how the partial sum

M

∑
k=−M

akΦk[n] (23)

progressively reconstructs x[n] as more harmonics are included.

n
-20 -15 -10 -5 0 5 10 15 20

x[
n]

0

0.2

0.4

0.6

0.8

1

1.2

n
-20 -15 -10 -5 0 5 10 15 20

x[
n]

0

0.2

0.4

0.6

0.8

1

1.2

n
-20 -15 -10 -5 0 5 10 15 20

x[
n]

0

0.2

0.4

0.6

0.8

1

1.2

n
-20 -15 -10 -5 0 5 10 15 20

x[
n]

0

0.2

0.4

0.6

0.8

1

1.2

M = 1

M = 2

M = 3

M = 4

Figure 1: The partial sum (23) with
Fourier coefficients (22), for N = 9
and N1 = 2. When M = 4, (23) is the
complete Fourier series; thus we fully
recover the rectangular pulse.
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Fourier Series as a "Change of Basis"

Consider the period-two signal:

x[n] =

{
2 if n even
3 if n odd.

We have N = 2 and the Fourier series is:

x[n] = a0Φ0[n] + a1Φ1[n]

where Φ0[n] ≡ 1, Φ1[n] = (−1)n. Applying the analysis equation,
you can show that:

a0 =
5
2

a1 = −1
2

.

Now view x[n] as a vector:

x =

[
2
3

]

whose entries are the values x[n] takes at n = 0, 1 and the dimension
is two because the period is N = 2.

Then,

Φ0 =

[
1
1

]
Φ1 =

[
1
−1

]
can be viewed as new basis vectors and the Fourier series can be
interpreted as a change of basis:

x = a0Φ0 + a1Φ1 =
5
2

[
1
1

]
− 1

2

[
1
−1

]
=

[
2
3

]
.

The advantage of the new basis is that, instead of the values in time,
the signal is represented with coefficients of its frequency compo-
nents. This allows, for example, compression algorithms that allocate
more bits to accurately store the coefficients of frequency components
that matter more to the quality of sound than other frequencies.
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