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Steady State Accurary

Hc(s) Hp(s) y(t)−
e(t)

r(t)

e(t) = r(t)− y(t)

E(s) = R(s)−Y(s)

= R(s)− Hc(s)Hp(s)
1 + Hc(s)Hp(s)

R(s) =
1

1 + Hc(s)Hp(s)
R(s)

Suppose r(t) is a unit step. How do we guarantee e(t) converges to
zero instead of a different constant?

R(s) =
1
s

=⇒ E(s) =
1

1 + Hc(s)Hp(s)
· 1

s

Final Value Theorem:

ess , lim
t→∞

e(t) = lim
s→0

sE(s) =
1

1 + Hc(0)Hp(0)

To ensure ess = 0, we need lims→0 Hc(s)Hp(s) = ∞, i.e.,

Hc(s)Hp(s) must have at least one pole at s = 0.

Example: Position control

Hp(s) =
1

Ms2 + bs
Hc(s) = K

Hc(s)Hp(s) =
K

s©(Ms + b)
→ ess = 0

y(t): positionx(t)
M

small K

large K

t

y(t)

1
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Example: Speed control

Hp(s) =
1

Ms + b
Hc(s) = K

y(t): speedx(t)
M

ess =
1

1 + Hc(0)Hp(0)
=

1
1 + K/b

6= 0

yss = 1− ess = 1− 1
1 + K/b

=
K/b

1 + K/b

small K

large K ess = 1
1+K/b

t

y(t)

1

Steady-state error decreases with increasing K, but increasing K is
not always a viable approach (poor damping if #poles− #zeros = 2,
instability if #poles− #zeros ≥ 3).

Integral Control

If Hp(s) does not contain a pole at s = 0, introduce one in Hc(s).

Drawback: pole at s = 0 makes it harder to meet damping and natu-
ral frequency specifications.

Example: Speed control of a DC motor

i

+−

R L

+
kω−

J

ω

x(t)

Suppose we want to control y(t) = ω (angular velocity).

First, find the transfer function Hp(s):

J
dω(t)

dt
= ki(t)

L
di(t)

dt
= −kω(t)− Ri(t) + x(t)
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Take the Laplace transform and substitute y = ω:

JsY(s) = kI(s)

LsI(s) = −kY(s)− RI(s) + X(s)

Substitute I(s) = X(s)−kY(s)
Ls+R from the second equation into the first:

JsY(s) = k
X(s)− kY(s)

Ls + R
[Js(Ls + R) + k2]Y(s) = kX(s)

Hp(s) =
Y(s)
X(s)

=
k

JLs2 + JRs + k2

Constant gain control Hc(s) = K gives nonzero
steady-state error:

ess =
1

1 + KHp(0)
=

1
1 + K

k
6= 0

Re

Im

Increasing the gain reduces ess, but leads to a poorly damped system:

smaller K

larger K

t

y(t)

1

Integral Control: Hc(s) = K
s

Re

Im

ωn smaller than
cst. gain control

ess = 0 achieved at the cost of slower response (smaller ωn):

t

y(t)

1
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Solution: Augment integral control with lead control:

Hc(s) =
K
s

s− β

s− α
α < β < 0.

The main features of this controller are similar to PID (proportional-
integral-derivative) control which is very popular in industry.

Disturbance Rejection with Integral Control

Hc(s) Hp(s) y−r

d (wind, current, load, etc)

Y(s) = Hp(s) (Hc(s)(R(s)−Y(s)) + D(s))(
1 + Hc(s)Hp(s)

)
Y(s) = Hc(s)Hp(s)R(s) + Hp(s)D(s)

Y(s) =
Hc(s)Hp(s)

1 + Hc(s)Hp(s)
R(s)︸ ︷︷ ︸

,Ynominal(s)

+
Hp(s)

1 + Hc(s)Hp(s)
D(s)︸ ︷︷ ︸

,∆(s)

Suppose d(t) = u(t): unit step. How do we guarantee y(t) recov-
ers from this disturbance; that is, δ(t) , y(t) − ynominal(t) → 0?

d(t)

t

y(t)

t

δ(t)

∆(s) =
Hp(s)

1 + Hc(s)Hp(s)
1
s

lim
t→∞

δ(t) = lim
s→0

s∆(s) = lim
s→0

Hp(s)
1 + Hc(s)Hp(s)

= 0 if Hc(s) has a pole at s = 0.

Example: Consider again the position control example on page 1.
Although the plant Hp(s) = 1

s(Ms+b) has a pole at s = 0, a constant
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gain controller Hc(s) = K cannot eliminate the steady state offset
caused by a disturbance entering the system before the plant (as in
the block diagram above). Instead we get the offset:

lim
t→∞

δ(t) = lim
s→0

Hp(s)
1 + Hc(s)Hp(s)

=
1
K

.

To remove the offset the control Hc(s) itself must have a pole at s = 0.

What Happens to Canceled Poles?

They get decoupled from the input-output relation but continue to
exist internally, creating dynamic modes that are invisible from the
output or can’t be influenced by the input.

As an illustration consider the series interconnection below where a
pole-zero cancelation occurs at s = λ.

e s− λ
x 1

s−λ y

In the time domain the first and second blocks satisfy, respectively

x(t) =
de(t)

dt
− λe(t) and

dy(t)
dt

= λy(t) + x(t).

Combining the two, we get:

d
dt
(y(t)− e(t)) = λ(y(t)− e(t)) ⇒ y(t)− e(t) = (y(0)− e(0))eλt.

Thus, instead of y(t) = e(t), we have

y(t) = e(t) + (y(0)− e(0))eλt

where the second term is a result of the canceled pole at s = λ. Since
transfer functions don’t account for initial conditions, this term does
not appear in the transfer function of the series interconnection:

Y(s)
E(s)

= (s− λ)
1

s− λ
= 1.

Example: Consider the circuit below where x is the voltage across
the parallel interconnection of a current source with two inductors
and a resistor. The currents r, e, y, and i are as labeled.

The orange block with input x and output y is governed by:

L1
dy(t)

dt
= x(t) ⇒ Y(s)

X(s)
=

1
L1s

.
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L1 L2 R2

↓ i

r

y

x
+

−

e

The blue block with input e and output x is governed by:

L2
d
dt

(
e(t)− x(t)

R2

)
︸ ︷︷ ︸

= i(t)

= x(t)

⇒ L2s
(

E(s)− X(s)
R2

)
= X(s) ⇒ X(s)

E(s)
=

L2s
L2
R2

s + 1
.

Noting from Kirchoff’s law that e = r − y, we view this circuit as a
feedback interconnection of the two blocks with reference input r:

L2s
L2
R2

s + 1
1

L1sr
e

y
−

x

With the pole-zero cancelation at s = 0, the closed loop transfer
function has a single pole at s = −R2(

1
L1

+ 1
L2
). Thus, when r(t) ≡ 0,

one might expect the current y(t) to decay to zero. However, this is
not necessarily true: depending on the initial conditions, a constant
current can remain in the loop formed by the two inductors as a
result of the canceled pole at s = 0:

L1 L2 R20
+

−

0
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