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Step Response of Second Order Systems
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Below are the step responses for various values of ζ. Note that ωn

changes only the time scale, not the shape of the response.
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Important Features of the Step Response:

1) Rise time (tr): time to go from 10% to 90% of steady-state value

2) Peak overshoot (Mp): (peak value - steady state)/steady state

3) Peaking time (tp): time to peak overshoot

4) Settling time (ts): time after which the step response stays within
1% of the steady-state value
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How do these parameters depend on ζ and ωn?

u(t) : unit step L←→ 1
s

Step response:

Y(s) =
1
s

H(s) =
ω2

n
s(s2 + 2ζωns + ω2

n)
(1)
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+
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y(t) =
(

1 + Be−σte−jωdt + B∗e−σtejωdt
)

u(t)

=

(
1 +

(
Be−jωdt + B∗ejωdt

)
︸ ︷︷ ︸
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Peaking time:

d
dt

y(t) = σe−σt
(
����cosωdt +

σ

ωd
sinωdt

)
− e−σt (−ωdsinωdt +����σcosωdt)

= e−σt
(

σ2

ωd
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)
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d
dt

y(t) = 0 =⇒ sinωdt = 0 tp =
π

ωd

Peak overshoot: Mp = y(tp)− 1

y(tp) =

(
1− cosωdtp︸ ︷︷ ︸

=cosπ=−1

e−σtp

)
= 1 + e−σtp = 1 + e−σ π

ωd

Mp = e−π σ
ωd = e

−π ζ√
1−ζ2 ζ ↗ =⇒ Mp ↘

Mp → 0 as ζ → 1
Mp ≈

{
0.05 ζ = 0.7
0.16 ζ = 0.5

Approximate expressions for rise time and settling time:

ts ≈
4.6
σ

(obtained from e−σts = 0.01)

tr ≈
1.8
ωn

for ζ = 0.5 (changes little with ζ)
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Note that tp, ts, tr are inversely proportional to ωn:

tp =
π

ωd
=

π

ωn
√

1− ζ2
ts ≈

4.6
σ

=
4.6
ωnζ

tr ≈
1.8
ωn

.

This is consistent with our observation on page 1 that ωn changes
only the time scale, not the shape of the response. We make this
property explicit in the following statement:

If ζ is kept constant and ωn is scaled by a factor of α > 0 (ωn → αωn) then
the step response is scaled in time by α: y(t)→ y(αt).
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Proof: If we replace ωn with αωn in (1), we get
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s (s2 + 2ζ(αωn)s + (αωn)2)
=

ω2
n

s
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Y
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)
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The statement above then follows from the scaling property of
Laplace transform:

y(αt) L←→ 1
α

Y
( s

α

)
.

Summary: ωn ↗ increases speed of the response
ζ ↗ reduces overshoot

Although the formulas above are for second order systems, they can
be applied as approximate expressions to higher order systems with
two dominant poles:

dominant
poles

response due to far-
away poles die out
quickly; therefore,

can be ignored
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Control Design by Root Locus

Root locus examples from last lecture:
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Example:
y(t): positionx(t): force

M

M
d2y
dt2 + b

dy
dt

= x(t) → Hp(s) =
1

Ms2 + bs

Suppose a damping ratio of ζ = 0.7 is desired:

Re

Im
select the gain K that corresponds
to this point on the root locusζ = 0.7

(θ = 45o)

Suppose, in addition to ζ, a lower bound on ωn is specified:

desired region
for closed-loop
poles (shaded)

Re

Im

cst. wn

cst. ζ

The root locus doesn’t go through the desired region, therefore con-
stant gain control won’t work. Try the controller:

Hc(s) = K
s− β

s− α
α < β < 0 (pole to the left of zero)
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Closed-loop poles:
Hc(s) Hp(s)︷ ︸︸ ︷︷ ︸︸ ︷

1 + K s−β
s−α

1
s(Ms+b) = 0︸ ︷︷ ︸
H(s)

Select α, β such that the root locus passes through the desired region

Re

Im

select gain K
from this segment

βα

A controller of the form

Hc(s) = K
s− β

s− α
α < β < 0

is called a ”lead controller”.

Example:
Hc(s) =

s + 1
s + 10

Hc(jω) =
1
10

1 + jω
1 + jω/10

20log10|Hc(jω)| = −20− 20log10|1 + jω/10|+ 20log10|1 + jω|

ω

|Hc(jω)|
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”phase-lead”
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Some History: Black’s Feedback Amplifier

The use of feedback is not limited to designing controllers that shape
the dynamic response of a system. Another important advantage is to
guarantee robustness to variations and disturbances.

In its early days Bell Labs developed amplifiers that enabled long
distance telephone communication. However, the amplifiers had
significant variations in their gains and their nonlinearity caused in-
terference between the channels. Addressing these problems Harold
Black introduced a negative feedback around the amplifier that both
reduced the variations in the gains and extended the linear range.

We illustrate these benefits on a static model of the amplifier in the
figure below. Suppose the amplifier has gain µ in its linear range and
the output saturates at ±1. When a negative feedback with gain

β� µ−1

is applied, the relationship between the new input x̃ and the output y
is again a saturation nonlinearity (show this), but the new gain is

µ

1 + βµ
≈ β−1

which is robust to variations in µ. In addition, the response is linear
when |x̃| ≤ 1+βµ

µ ≈ β, a significantly wider range than |x| ≤ µ−1.

−

β

x̃ y

x̃
x

y

⇒

µ−1

1

1+βµ
µ

1

≈β�µ−1
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The drawback is that the gain of the amplifier is now significantly
reduced. As Black explains in his 1934 paper in the Bell System Tech-
nical Journal:

"... by building an amplifier whose gain is deliberately made say 40
decibels higher than necessary and then feeding the output back on
the input in such a way as to throw away excess gain, it has been
found possible to effect extraordinarily improvement in constancy of
amplification and freedom from nonlinearity."
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