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Feedback Control

r(t) : reference signal to be tracked by y/(t)
H,(s) : controller; Hy,(s) : system to be controlled (“plant”)

Closed-loop transfer function:

Y(s) Hc(s)Hp(s)

H(s) = R() 1+ He(s)Hp(s)

Constant-gain control: H.(s) = K

KH,(s)
) = T kA, )

Closed-loop poles: roots of 1+ KHy(s) =0

Example 1 (Speed Control)

x(t): force y(t): speed

1
Hpy(s) = e open-loop pole: s =0
K

Closed-loop pole: 1+ Ky =0 =5 = —M

Im step response:

‘larger K t
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Example 2 (Position Control) y(t) : position

dy  dy 1 1

T MsZ+bs  s(Ms+b)

Open-loop poles: s =0, *mb

Closed-loop poles:
K

2
1+s(Ms+b) 0= Ms* + bs +
—bF Vb2 —4KM
8= oM

step response:

I K>
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Root-Locus Analysis
Section 11.3 in Oppenheim & Willsky

How do the roots of

1+ KH(s) =0

move as K is increased from K = 0 to K = +o0?

If a point 59 € C is on the root locus, then H(sp) = 3+ for some
K > 0, therefore £H(sp) = 7. The rules for sketching the root locus
below are derived from this property.

Rules for sketching the root locus:
Let

Mt by 8™ LD
s +a, 1s"t4+...+ag

I (s — By) Br: zerosk=1,..,m
ITf_;(s —ax) ap: polesk=1,..,n

1) As K — 0, the roots converge to the poles of H(s):
H(s) = 1 — 0
K

Since there are n poles, the root locus has n branches, each starting at
a pole of H(s).
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2) As K — oo, m branches approach the zeros of H(s). If m < n, then
n — m branches approach infinity following asymptotes centered at:

ko1 %% — Lo Bk

n—m

with angles:

180° + (i — 1)360°
n—m

Example 2 above: n —m = 2, poles: 0, —b/ M
with center = ﬁ, and angles = 90°, —90°

3) Parts of the real line that lie to the left of an odd number of real
poles and zeros of H(s) are on the root locus.

Example 1 above: Example 2:

Proof of Property 3:

m

LH(s0) = Y £(s0 — By) —kf £(s0 — )
=1

k=1

If sp is on the real line:

A{(SO—a):{g li o=@ */DW
if sp>a S0 a
Therefore,
£H(sg) = rm r: total # of poles and zeros to the right of sy

= 7 ifrisodd.

4) Branches between two real poles must break away into the com-
plex plane for some K > 0. The break-away and break-in points can
be determined by solving for the roots of

dH(s)

ds =0

that lie on the real line.

Example 2 above:

3
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dH_ —2Ms—b _ o <b
ds — (Ms2+bs)2 - 2M
Example 3:
s—1
H(s) = —————=
&)= 5 D6+2)

n=2 m=1,zeros: s =1, poles: s =1, -2.

one asymptote
with angle 180°

‘ Re
Example 4:
H(s) = s+2 n —m = 1 asymptote with angle 180°
~os(s+1) T asymp &
Im
break-away/ break-in points:
dH _ s*+5—(2s+1)(s+2) 0
= ds s2(s+1)2 B
¢ s2 45— (28 +55+2) =0
—4
24+454+2=0=s5= %\/é :—2¢\/§
circle w/ radius v/2
centered at —2
Example 5:
s+2
H(s)=———F—7—— a>2
(s) s(s+1)(s+a)

(pole at —a added to the previous example)

n —m = 2, therefore two asymptotes with angles +90°

center of the asymptotes: w = 1%“
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dH(s) __ 0

determined from =

For large enough 4, ‘% = 0 has three real, negative roots:

Im

N
"o v Re

MATLAB command: rltool

High-Gain Instability:
Large feedback gain causes instability if:

1) H(s) has zeros in the right-half plane (nonminimum phase)
2)n—m >3

n—m=2
— n—m=3

center

stable but poorly damped as K

n—-m=4 n—m=>5

(A 45° 72° AA36°

EE120 - FALL’15 - LECTURE 20 NOTES

5



EE120 - FALL’15 - LECTURE 20 NOTES 6

n —m = 1 : faster response without losing damping or stability as
%

Example: Root locus of a system that can’t be stabilized with constant
gain feedback:




	Feedback Control

