EE120-Fall'15-Lecture 20 Notes 1

Murat Arcak
9 November 2015

Feedback Control

${ }^{1}$ Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
-
$r(t)$: reference signal to be tracked by $y(t)$
$H_{c}(s)$: controller; $H_{p}(s)$: system to be controlled ("plant")
Closed-loop transfer function:

$$
H(s)=\frac{Y(s)}{R(s)}=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}
$$

Constant-gain control: $H_{c}(s)=K$

$$
H(s)=\frac{K H_{p}(s)}{1+K H_{p}(s)}
$$

Closed-loop poles: roots of $1+K H_{p}(s)=0$
Example 1 (Speed Control)

$$
H_{p}(s)=\frac{1}{M s} \longrightarrow \text { open-loop pole: } s=0
$$

Closed-loop pole: $1+K \frac{1}{M s}=0 \Longrightarrow s=-\frac{K}{M}$

$\xrightarrow{\text { Con }}$

Example 2 (Position Control) $y(t):$ position

$$
M \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}=x(t) \quad H_{p}(s)=\frac{1}{M s^{2}+b s}=\frac{1}{s(M s+b)}
$$

Open-loop poles: $s=0, \frac{-b}{M}$
Closed-loop poles:

$$
\begin{array}{r}
1+\frac{K}{s(M s+b)}=0 \Longrightarrow \quad M s^{2}+b s+K=0 \\
\\
s=\frac{-b \mp \sqrt{b^{2}-4 K M}}{2 M}
\end{array}
$$

Root-Locus Analysis

How do the roots of

$$
1+K H(s)=0
$$

move as K is increased from $K=0$ to $K=+\infty$?
If a point $s_{0} \in \mathcal{C}$ is on the root locus, then $H\left(s_{0}\right)=\frac{-1}{K}$ for some $K>0$, therefore $\measuredangle H\left(s_{0}\right)=\pi$. The rules for sketching the root locus below are derived from this property.

Rules for sketching the root locus:
Let

$$
\begin{aligned}
& H(s)=\frac{s^{m}+b_{m-1} s^{m-1}+\ldots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{0}} \quad m \leq n \\
&=\frac{\prod_{k=1}^{m}\left(s-\beta_{k}\right)}{\prod_{k=1}^{n}\left(s-\alpha_{k}\right)} \quad \beta_{k}: \text { zeros } k=1, \ldots, m \\
& \alpha_{k}: \operatorname{poles} k=1, \ldots, n
\end{aligned}
$$

1) As $K \rightarrow 0$, the roots converge to the poles of $H(s)$:

$$
H(s)=-\frac{1}{K} \rightarrow \infty
$$

Since there are n poles, the root locus has n branches, each starting at a pole of $H(s)$.
2) As $K \rightarrow \infty, m$ branches approach the zeros of $H(s)$. If $m<n$, then $n-m$ branches approach infinity following asymptotes centered at:

$$
\frac{\sum_{k=1}^{n} \alpha_{k}-\sum_{k=1}^{m} \beta_{k}}{n-m}
$$

with angles:

$$
\frac{180^{\circ}+(i-1) 360^{\circ}}{n-m} \quad i=1,2, \ldots, n-m
$$

Example 2 above: $n-m=2$, poles: $0,-b / M$
with center $=\frac{-b}{2 M}$, and angles $=90^{\circ},-90^{\circ}$
3) Parts of the real line that lie to the left of an odd number of real poles and zeros of $H(s)$ are on the root locus.
Example 1 above: Example 2:

Proof of Property 3:

$$
\measuredangle H\left(s_{0}\right)=\sum_{k=1}^{m} \measuredangle\left(s_{0}-\beta_{k}\right)-\sum_{k=1}^{n} \measuredangle\left(s_{0}-\alpha_{k}\right)
$$

If s_{0} is on the real line:

$$
\measuredangle\left(s_{0}-a\right)=\left\{\begin{array}{ccc}
\pi & \text { if } & s_{0}<a \\
0 & \text { if } & s_{0}>a
\end{array} \quad \underset{s_{0}}{\underset{\sim}{a}}\right.
$$

Therefore,

$$
\begin{aligned}
\measuredangle H\left(s_{0}\right) & =r \pi \quad r: \text { total \# of poles and zeros to the right of } s_{0} \\
& =\pi \quad \text { if } r \text { is odd. }
\end{aligned}
$$

4) Branches between two real poles must break away into the complex plane for some $K>0$. The break-away and break-in points can be determined by solving for the roots of

$$
\frac{d H(s)}{d s}=0
$$

that lie on the real line.
Example 2 above:

$$
H(s)=\frac{1}{M s^{2}+b s}
$$

$$
\frac{d H}{d s}=\frac{-2 M s-b}{\left(M s^{2}+b s\right)^{2}}=0 \quad \Rightarrow \quad s=\frac{-b}{2 M}
$$

Example 3:

$$
H(s)=\frac{s-1}{(s+1)(s+2)}
$$

$n=2, m=1$, zeros: $s=1$, poles: $s=1,-2$.
one asymptote
with angle 180°

Example 4:

$$
H(s)=\frac{s+2}{s(s+1)} n-m=1 \text { asymptote with angle } 180^{\circ}
$$

 centered at -2

Example 5:

$$
H(s)=\frac{s+2}{s(s+1)(s+a)} \quad a>2
$$

(pole at $-a$ added to the previous example)
$n-m=2$, therefore two asymptotes with angles $\mp 90^{\circ}$
center of the asymptotes: $\frac{(0-1-a)-(-2)}{2}=\frac{1-a}{2}$

For large enough $a, \frac{d H}{d s}=0$ has three real, negative roots:

MATLAB command: rltool
High-Gain Instability:
Large feedback gain causes instability if:

1) $H(s)$ has zeros in the right-half plane (nonminimum phase)
2) $n-m \geq 3$
$n-m=2$

$$
n-m=3
$$

stable but poorly damped as $K \nearrow$
$n-m=4$

$$
\underline{n-m=5}
$$

$n-m=1$: faster response without losing damping or stability as $K \nearrow$

Example: Root locus of a system that can't be stabilized with constant gain feedback:

