
EE120 - Fall’15 - Lecture 19 Notes1
1 Licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike
4.0 International License.Murat Arcak

4 November 2015

Geometric Evaluation of the Frequency Response (Continued)

Example: (M + 1)-point moving average system

y[n] =
1

M + 1
(x[n] + x[n− 1] + . . . + x[n−M])

. . .

n

1
M+1

h[n]

M

H(z) =
1

M + 1

(
1 + z−1 + . . . + z−M

)
=

1
M + 1

zM + zM−1 + . . . + 1
zM

All poles at z = 0. (Note this is true for any FIR system.)
Zeros: roots of zM + zM−1 + . . . + 1.

From the identity zM+1 − 1 = (z− 1)(zM + zM−1 + . . . + 1), the roots
of zM + zM−1 + . . . + 1 are the roots of zM+1 − 1 except for z = 1.

zM+1 = 1 =⇒ z = ej 2π
M+1 k k = 1, 2, . . . , M (k = 0, i.e., z = 1 excluded)

Re

Im

M poles

(M = 7)

2π
M+1

2π
M+1

ω

1
|H(ejω)|

π2π
M+1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


ee120 - fall’15 - lecture 19 notes 2

Example: Finding the phase

ejω
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H(z) =

1− a
2

1 + z−1

1− az−1 =
1− a

2
z + 1
z− a

H(ejω) =
1− a

2
ejω + 1
ejω − a

=
1− a

2
V2

V1

|H(ejω)| = 1− a
2
|V2|
|V1|

]H(ejω) = φ2 − φ1

ω

1
|H(ejω)|

π

ω

−90o

∡H(ejω)

(ϕ2 → 90o, ϕ1 → 180o)

All Pass Systems

Continuous-time:

H(s) =
a− s
s + a

jω

Re

Im

V1 V2

|V1| = |V2| ∀ω

Discrete-time:

H(z) =
z−1 − a

1− az−1 = −a
z− 1/a

z− a
, a real

ejω

Re

Im

a 1
a

ω
V1 V2

|V1|2 = (cosω− a)2 + sin2ω = 1− 2acosω + a2

|V2|2 =

(
1
a
− cosω

)2
+ sin2ω =

1
a2 −

2
a

cosω + 1

then, a2|V2|2 = |V1|2 ⇒ |a| |V2|
|V1| = 1.

|H(ejω)| = |a| |e
jω − 1/a|
|ejω − a| = |a| |V2|

|V1|
= 1 ∀ω
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General form of a DT all pass system:

H(z) =
N

∏
k=1

(
z−1 − ak

1− akz−1

)
Each pole ak accompanied by a zero at 1/ak.

For a stable and causal all pass system, all zeros are outside the unit
circle.

Minimum Phase Systems

Definition: A stable and causal DT LTI system with transfer function
H(z) whose zeros are also within the unit circle.

As in continuous-time, a nonminimum phase transfer function H(z)
can be decomposed as:

H(z) = Hmin(z)Hap(z)

where Hmin(z) is minimum phase and Hap(z) is all pass.

Construct Hap(z) such that it encompasses all zeros of H(z) outside
the unit circle. Obtain Hmin(z) from H(z)/Hap(z).

Example:

H(z) =
1− 3z−1

1− 1
2 z−1

zero @ 3 outside the unit circle

Hap(z) =
z−1 − 1/3
1− 1

3 z−1
Hmin(z) =

H(z)
Hap(z)

=
1− 3z−1

1− 1
2 z−1

1− 1
3 z−1

z−1 − 1/3
= −3

1− 1
3 z−1

1− 1
2 z−1

Re

Im

1/2 3

Hap

Hmin

Pole/zero pair added at 1/3.
Pole at 1/3 paired with existing zero at 3 to form all pass system.
Zero at 1/3 paired with existing pole at 1/2 to form minimum phase
system.
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Example:

s[n] Hd(z)
sd[n]

Hc(z) sc[n]

distorting system,
e.g.,comm.channel

compensating
system

If Hd(z) is minimum phase, we can design Hc(z) = 1
Hd(z)

(stable).

If not, decompose: Hd(z) = Hd,min(z)Hd,ap(z)

and design: Hc(z) =
1

Hd,min(z)
=⇒ Hd(z)Hc(z) = Hd,ap(z)

Magnitude distortion corrected.

The Unilateral z-Transform
Section 10.9 in Oppenheim & Willsky

X (z) =
∞

∑
n = 0

x[n]z−n = x[0] + x[1]z−1 + x[2]z−2 + . . . (1)

Properties of the Unilateral z-Transform

Most properties of the bilateral z-transform hold for the unilateral
transform.

Exceptions:

Convolution:

x1[n] ∗ x2[n]
UZ←→ X1(z)X2(z) if x1[n] = x2[n] = 0 ∀n < 0.

Time Delay:

x[n− 1] UZ←→ z−1X (z) + x[−1]

Contrast to: x[n− 1] Z←→ z−1X (z)

Proof:

∞

∑
n=0

x[n− 1]z−n = x[−1] + x[0]z−1 + x[1]z−2 + x[2]z−3 + . . .︸ ︷︷ ︸
=z−1(x[0] + x[1]z−1 + x[2]z−2 + . . .)︸ ︷︷ ︸

=X (z)
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Applying repeatedly:

x[n− 2] UZ←→ z−1(z−1X (z) + x[−1]) + x[−2]

= z−2X (z) + x[−1]z−1 + x[−2]

x[n− 3] UZ←→ z−1(z−2X (z) + x[−1]z−1 + x[−2]) + x[−3]

= z−3X (z) + x[−1]z−2 + x[−2]z−1 + x[−3]

Solving Difference Equations using the Unilateral z-Transform

Example: y[n]− 0.6y[n− 1] = (0.5)nu[n]

Take unilateral z-transforms on both sides:

Y(z)− 0.6(z−1Y(z) + y[−1]) =
1

1− 0.5z−1

(1− 0.6z−1)Y(z) = 0.6y[−1]+
1

1− 0.5z−1 =
1 + 0.6y[−1]− 0.3y[−1]z−1

1− 0.5z−1

Y(z) =
(1 + 0.6y[−1])− 0.3y[−1]z−1

(1− 0.6z−1)(1− 0.5z−1)
=

A
1− 0.6z−1 +

B
1− 0.5z−1

A + B = 1 + 0.6y[−1]
0.5A + 0.6B = 0.3y[−1]

}
B = −5

A = 6 + 0.6y[−1]

y[n] = (6 + 0.6y[−1])(0.6)nu[n]− 5(0.5)nu[n]

Compare to the time domain method:
1) Homogenous solution: A(0.6)n

2) Particular solution: yp[n] = B(0.5)n

Substitute in difference equation to find B:

B(0.5)n − 0.6B(0.5)n−1 = (0.5)n

B− 0.6(0.5)−1B = 1 =⇒ −0.2B = 1 =⇒ B = −5

3) The complete solution is y[n] = A(0.6)n − 5(0.5)n and
A is determined from the initial condition:

y[−1] = A(0.6)−1 − 5(0.5)−1

A = (0.6)(y[−1] + 10) = 6 + 0.6y[−1]
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Interconnections of DT LTI Systems

x[n] H1(z) H2(z) y[n]

H1(z)

H2(z)

x[n] y[n]

H1(z)

H2(z)

−x[n] y[n]

Y(z) = H2(z)H1(z)︸ ︷︷ ︸
H(z)

X(z)

Y(z) = (H1(z) + H2(z))X(z)

Y(z)
X(z)

=
H1(z)

1 + H1(z)H2(z)

Example:

+

+

x[n] y[n]

z−1

z−1

b0

b1

b2

⇒

+

+

x[n] y[n]

z−1

z−1

b0

b1

b2

= b1 + b2z−1

⇒ H(z) = b0 + z−1(b1 + b2z−1) = b0 + b1z−1 + b2z−2

Example:

+

+
x[n] y[n]

z−1

z−1

−a1

−a2

⇒ +

+
x[n] y[n]

z−1

z−1

−a1

−a2

= −a1 − a2z−1

(parallel)

Then, from the feedback interconnection formula:

H(z) =
1

1− z−1(−a1 − a2z−1)
=

1
1 + a1z−1 + a2z−2
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Recall the block diagram in Lecture 2 for:

y[n] = −
N

∑
k=1

aky[n− k] +
M

∑
k=0

bkx[n− k]

H(z) =
b0 + b1z−1 + . . . + bMz−M

1 + a1z−1 + . . . + aNz−N

+

+

+ +

+

+x[n] y[n]

D

D

D

D

b0

b1

b2

−a1

−a2

The delay element D corresponds to z−1. The blue block implements
the numerator:

H1(z) = b0 + b1z−1 + . . . + bMz−M

and the orange block implements the denominator:

H2(z) =
1

1 + a1z−1 + . . . + aNz−N

as in the examples above. The series interconnection of the two gives:

H(z) = H1(z)H2(z).

Changing the order of H1(z) and H2(z) does not change the product
and allows us to use fewer delay elements, as was done in Lecture 2.
(See figure on next page.)

Obtaining Transfer Functions from Block Diagrams

In the examples above a repeated application of the series, parallel,
and feedback interconnection formulas gave the transfer function.
However, this is not an efficient approach in general and may not be
possible for every interconnection.
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We outline an alternative procedure and illustrate it on the block
diagram below.

Step 1: Label the output of each delay element as a function of time:
w1[n], w2[n], ... These are called "state variables."

+

++

+x[n] y[n]

D

D

−a1 b1

−a2 b2

b0
I

w1[n + 1]

w1[n]

w2[n]

Step 2: Note that the input signal to the ith delay element is wi[n + 1]
so that its output is wi[n]. By inspecting the interconnection, ex-
press these inputs in terms of the input x[n] and state variables
w1[n], w2[n], ... In the block diagram above:

w1[n + 1] = −a1w1[n]− a2w2[n] + x[n]

w2[n + 1] = w1[n]

Step 3: Take the z transform of these equations and solve for W1(z),
W2(z), ... in terms of X(z).

zW1(z) = −a1W1(z)− a2W2(z) + X(z)

zW2(z) = W1(z)

Substituting W2(z) = W1(z)/z in the first equation and rearranging:(
z + a1 +

a2

z

)
W1(z) = X(z) ⇒ W1(z) =

z
z2 + a1z + a2

X(z)

W2(z) =
1

z2 + a1z + a2
X(z)

Step 4: Express Y(z) in terms of X(z) and W1(z), W2(z), ..., again
using the interconnection. Then substitute W1(z), W2(z),... from the
previous step so Y(z) depends on X(z) only.

Y(z) = b0zW1(z) + b1W1(z) + b2W2(z) =
b0z2 + b1z + b2

z2 + a1z + a2
X(z)

H(z) =
b0z2 + b1z + b2

z2 + a1z + a2
=

b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 .
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Exercise: Show that the block diagram below yields the same trans-
fer function

H(z) =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2 .

+

+

+

x[n] y[n]

D

D

b1 −a1

b2 −a2

b0
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