EE120-Fall'15-Lecture 17 Notes 1

Murat Arcak
28 October 2015

The z-Transform

$$
\begin{gather*}
X(z) \triangleq \sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{1}\\
\left.X(z)\right|_{z=e^{j \omega}}=X\left(e^{j \omega}\right): D T F T \tag{2}
\end{gather*}
$$

The DTFT converges if the ROC for the z-transform includes the unit circle $z=e^{j \omega}$:

Example 1: $\quad x[n]=a^{n} u[n]$

$$
X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}} \text { if } \underbrace{\left|a z^{-1}\right|<1}_{\text {ROC: }|z|>|a|}
$$

DTFT:

$$
X\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}} \text { if }|a|<1
$$

Poles and zeros: $X(z)=\frac{z}{z-a} \rightarrow$ pole at $z=a$, zero at $z=0$.
${ }^{1}$ Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Figure 1: Berkeley EECS emeritus professor Lotfi Zadeh (above) and former professor Eliahu Jury (below) were among those who developed the theory of z transforms in the 1950 . Research in sampled systems was in part motivated by radar which came to prominence during World War II.

Example 2: $x[n]=-a^{n} u[-n-1]$

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{-1}-a^{n} z^{-n}=\sum_{n=1}^{\infty}-a^{-n} z^{n} \\
& =1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{n} \\
& =1-\frac{1}{1-a^{-1} z} \text { if }\left|a^{-1} z\right|<1 \\
& =\frac{-a^{-1} z}{1-a^{-1} z}=\frac{1}{1-a z^{-1}} \text { ROC }:|z|<|a|
\end{aligned}
$$

DTFT converges is $|a|>1$.
Example 3: $x[n]=-\left(\frac{1}{2}\right)^{n} u[-n-1]+\left(\frac{-1}{3}\right)^{n} u[n]$

$$
\begin{aligned}
X(z)= & \frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}=\frac{z}{z-\frac{1}{2}}+\frac{z}{z-\frac{1}{2}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)} \\
& \underbrace{|z|<\frac{1}{2} \quad|z|>\frac{1}{3}}_{\text {ROC: } \frac{1}{3}<|z|<\frac{1}{2}}
\end{aligned}
$$

Example 4: $x[n]=\left(\frac{1}{2}\right)^{n} u[n]-\left(\frac{-1}{3}\right)^{n} u[-n-1]$

$$
R O C=\left\{z:|z|>\frac{1}{2}\right\} \cap\left\{z:|z|<\frac{1}{3}\right\}=\varnothing
$$

Example 5: $x[n]=a^{n}, a \neq 0$.

$$
\begin{aligned}
& x[n]=a^{n} u[n]+a^{n} u[-n-1] \\
& R O C=\{z:|z|>a\} \cap\{z:|z|<a\}=\varnothing
\end{aligned}
$$

Properties of the ROC

1) A ring or disk in the z-plane, centered at the origin.
2) ROC does not contain any poles.
3) For finite duration sequences, ROC is the entire z-plane, except possibly $z=0$ or $z=\infty$.

Example 6:

If $x[n] \neq 0$ for some $n>0$, ROC excludes $z=0$.
b)

$$
X(z)=z^{2}+z+1
$$

ROC excludes $z=\infty$.
If $x[n] \neq 0$ for some $n<0$, ROC excludes $z=\infty$.
c) $x[n]=\delta[n] \rightarrow X(z)=1$ and ROC is the entire z-plane, including $z=0$ and $z=\infty$.
4) If $x[n]$ is right-sided $\left(x[n] \equiv 0 \forall n<N_{1}\right.$, for some $\left.N_{1}\right)$ and if $|z|=r_{0}$ is in the ROC, then all finite values of z for which $|z|>r_{0}$ are also in the ROC. (Ex 1)
$z=\infty$ included if $N_{1}=0$. (Ex 6)
5) If $x[n]$ is left-sided $\left(x[n] \equiv 0 \forall n>N_{2}\right.$, for some $\left.N_{2}\right)$ and if $|z|=r_{0}$ is in the ROC, then $0<|z|<r_{0}$ is also in the ROC. (Ex 2)
$z=0$ included if $N_{2}=0$. (Ex 6)
6) If $x[n]$ is two-sided and if $|z|=r_{0}$ is in the ROC, then the ROC is a ring that includes $|z|=r_{0}$. (Ex 3$)$

The following hold when $X(z)$ is rational:
7) ROC is bounded by poles or extends to infinity.
8) If $x[n]$ is right-sided, ROC extends from the outermost pole to ∞.
$z=\infty$ included if $N_{1}=0$.
If $x[n]$ is left-sided, ROC extends from the innermost nonzero pole to 0 .
$z=0$ included if $N_{2}=0$.
For a two-sided sequence, the ROC is a ring:
Inner bound: Pole with largest magnitude that contributes to the right side.
Outer bound: Pole with smallest magnitude that contributes to the left side.
(Ex 3)

Inverse z-Transform by Partial Fraction Expansion
Example:

$$
\begin{gathered}
X(z)=\frac{1}{\left(1-\frac{1}{4} z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}=\frac{A_{1}}{1-\frac{1}{4} z^{-1}}+\frac{A_{2}}{1-\frac{1}{2} z^{-1}} \\
A_{1}=\left.\left(1-\frac{1}{4} z^{-1}\right) X(z)\right|_{z=\frac{1}{4}}=-1 \\
A_{2}=\left.\left(1-\frac{1}{2} z^{-1}\right) X(z)\right|_{z=\frac{1}{2}}=2
\end{gathered}
$$

1)
2)

3)

$x[n]=\left[2\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n}\right] u[n] \quad x[n]=-\left[2\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{4}\right)^{n}\right] u[-n-1] \quad x[n]=-2\left(\frac{1}{2}\right)^{n} u[-n-1]-\left(\frac{1}{4}\right)^{n} u[n]$

How to perform a PFE in general?

$$
X(z)=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\ldots+a_{N} z^{-N}}, \quad a_{0} \neq 0
$$

Suppose unrepeated poles: $d_{1}, d_{2}, \ldots, d_{N}$.
If $M<N$,

$$
X(z)=\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}
$$

If $M \geq N$,

$$
\begin{aligned}
& X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}} \\
& \Downarrow \\
& x[n]=\sum_{r=0}^{M-N} B_{r} \delta[n-r]+\underbrace{\sum_{k=1}^{N} A_{k} d_{k}^{n} u[n]}_{\text {if right-sided }}
\end{aligned}
$$

Example:

$$
\begin{aligned}
X(z) & =\frac{1+2 z^{-1}+z^{-2}}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}} \quad M=N=2 \\
& =B_{0}+\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{1-z^{-1}}
\end{aligned}
$$

Matching coefficients: $A_{1}=-9, A_{2}=8, B_{0}=2$.

$$
x[n]=2 \delta[n]-9\left(\frac{1}{2}\right)^{n} u[n]+8 u[n] .
$$

Differentiation (in z-domain) Property:

$$
\begin{array}{rll}
x[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z) & R O C=R \\
n x[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow}-z \frac{d X(z)}{d z} & R O C=R \tag{4}
\end{array}
$$

Proof: $X(z)=\sum_{n=-\infty}^{\infty} x[z] z^{-n}$

$$
\begin{aligned}
\frac{d X(z)}{d z}= & \sum_{n=-\infty}^{\infty}-n x[n] z^{-(n+1)}=-z^{-1} \sum_{n=-\infty}^{\infty} n x[n] z^{-n} \\
& \sum_{n=-\infty}^{\infty} n x[n] z^{-n}=-z \frac{d X(z)}{d z}
\end{aligned}
$$

Example:

$$
\begin{aligned}
a^{n} u[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-a z^{-1}} \\
n a^{n} u[n] & \stackrel{\mathcal{Z}}{\longleftrightarrow}-z \frac{d}{d z}\left\{\frac{1}{1-a z^{-1}}\right\}=z \frac{a z^{-2}}{\left(1-a z^{-1}\right)^{2}}=\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}
\end{aligned}
$$

Back to Partial Fraction Expansions: If d_{k} is a pole of multiplicity two, include two terms:

$$
\begin{gathered}
A_{k_{1}} \frac{1}{1-d_{k} z^{-1}}+A_{k_{2}} \frac{d_{k} z^{-1}}{\left(1-d_{k} z^{-1}\right)^{2}} \\
\\
\downarrow \\
\left(A_{k_{1}}+A_{k_{2}} n\right) d_{k}^{n} u[n]
\end{gathered}
$$

Example: $X(z)=\frac{-\frac{1}{2}+z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)^{2}} \quad \begin{array}{lll}M & =1 \\ N & =2 & |z|>\frac{1}{2}\end{array}$

$$
\begin{aligned}
& =A_{11} \frac{1}{1-\frac{1}{2} z^{-1}}+A_{12} \frac{\frac{1}{2} z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)^{2}} \\
& =\frac{A_{11}+\frac{1}{2}\left(A_{12}-A_{11}\right) z^{-1}}{\left(1-\frac{1}{2} z^{-1}\right)^{2}} \\
& \left.\begin{array}{r}
A_{11}=-\frac{1}{2} \\
\frac{1}{2}\left(A_{12}-A_{11}\right)=1
\end{array}\right\} A_{12}=\frac{3}{2} \\
& x[n]=\left(-\frac{1}{2}+\frac{3}{2} n\right)\left(\frac{1}{2}\right)^{n} u[n]
\end{aligned}
$$

\(\left.\begin{array}{lll}\hline Signal \& Transform \& ROC

\hline \delta[n] \& 1 \& all z

\hline \delta[n-m] \& z^{-m} \& all z except z=0 if m>0,

all z except z=\infty if m<0\end{array}\right]\)| | | $\|z\|>1$ |
| :--- | :--- | :--- |
| $u[n]$ | $\frac{1}{1-z^{-1}}$ | $\|z\|<1$ |
| $-u[-n-1]$ | $\frac{1}{1-z^{-1}}$ | $\|z\|>a$ |
| $a^{n} u[n]$ | $\frac{1}{1-a z^{-1}}$ | $\|z\|<a$ |
| $-a^{n} u[-n-1]$ | $\frac{1}{1-a z^{-1}}$ | $\|z\|>a$ |
| $n a^{n} u[n]$ | $\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$ | $\|z\|<a$ |
| $-n a^{n} u[-n-1]$ | $\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}}$ | $\|z\|>1$ |
| $\cos \left(\omega_{0} n\right) u[n]$ | $\frac{1-\cos \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0} z^{-1}+z^{-2}\right.}$ | $\|z\|>1$ |
| $\sin \left(\omega_{0} n\right) u[n]$ | $\frac{\sin \left(\omega_{0}\right) z^{-1}}{1-2 \cos \left(\omega_{0} z^{-1}+z^{-2}\right.}$ | $\|z\|>r$ |
| $r^{n} \cos \left(\omega_{0} n\right) u[n]$ | $\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$ | $\|z\|>$ |
| $r^{n} \sin \left(\omega_{0} n\right) u[n]$ | $\frac{r \sin \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}$ | $\|z\|>r$ |

Table 1: z transforms of several functions.

