EE120-Fall'15-Lecture 16 Notes 1

${ }^{1}$ Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Murat Arcak

26 October 2015

All-Pass Systems

What is the frequency response of an LTI system with transfer function:

$$
H(s)=\frac{a-s}{s+a}, \quad a>0 ?
$$

General all-pass system:

$$
\begin{equation*}
H_{a p}(s)=\frac{\prod_{i=1}^{n}\left(a_{i}-s\right)}{\prod_{i=1}^{n}\left(s+a_{i}\right)}, \quad a_{i}>0 \quad i=1, \ldots, n . \tag{1}
\end{equation*}
$$

For a stable and causal all-pass system, all zeros are in the right halfplane because they are mirror images of the poles.

Although $\left|H_{a p}(j \omega)\right| \equiv 1$, an all-pass system introduces delay:

$$
e^{j \omega t} \rightarrow H_{a p}(j \omega) \rightarrow H_{a p}(j \omega) e^{j \omega t}=e^{j \measuredangle H_{a p}(j \omega)} e^{j \omega t}=e^{j \omega(t-\tau(\omega))}
$$

where:

$$
\tau(\omega) \triangleq-\frac{\measuredangle H_{a p}(j \omega)}{\omega}>0 .
$$

Moreover, the system is not linear phase (i.e. $\tau(\omega)$ is not constant); therefore it causes phase distortion. (Recall Lecture 8.)

Minimum Phase Systems

A stable and causal LTI system is called minimum phase if all of its zeros are in the open left half-plane.

Any non-minimum phase transfer function $H(s)$ can be decomposed as:

$$
\begin{equation*}
H(s)=\underbrace{H_{\min }(s)}_{\text {min-phase }} \underbrace{H_{a p}(s)}_{\text {all-pass }} \tag{2}
\end{equation*}
$$

This decomposition explains the genesis of the term minimum phase:

$$
|H(j \omega)|=\left|H_{\min }(j \omega)\right| \text { since }\left|H_{a p}(j \omega)\right| \equiv 1,
$$

but the all-pass component adds more delay. Therefore, $H(s)$ and
$H_{\text {min }}(s)$ have identical frequency responses in magnitude, but $H_{\text {min }}(s)$ has the minimum phase delay.

Example: $\quad H(s)=\frac{10-s}{10(s+1)}=\underbrace{\frac{s+10}{10(s+1)}}_{H_{\min }(s)} \cdot \underbrace{\frac{10-s}{s+10}}_{H_{\text {ap }}(s)}$

Example:

If $H_{d}(s)$ is minimum phase, we can simply choose $H_{c}(s)=\frac{1}{H_{d}(s)}$.
If $H_{d}(s)$ is nonminimum phase, $H_{c}(s)=\frac{1}{H_{d}(s)}$ is unstable. To avoid instability, decompose: $H_{d}(s)=H_{d, \min }(s) H_{d, a p}(s)$ and select:

$$
H_{c}(s)=\frac{1}{H_{d, \min }(s)} \quad \Longrightarrow \quad \underbrace{H_{d}(s) H_{c}(s)=H_{d, a p}(s)}_{\text {magnitude distortion eliminated }}
$$

Transfer Functions of Interconnected LTI Systems

$$
\begin{gathered}
h(t)=h_{1}(t)+h_{2}(t) \\
H(s)=H_{1}(s)+H_{2}(s)
\end{gathered}
$$

$$
\begin{aligned}
& h(t)=h_{1}(t) * h_{2}(t) \\
& H(s)=H_{1}(s) H_{2}(s)
\end{aligned}
$$

$$
\begin{aligned}
E(s) & =X(s)-H_{2}(s) Y(s) \\
Y(s) & =H_{1}(s) E(s) \\
& =H_{1}(s) X(s)-H_{1}(s) H_{2}(s) Y(s)
\end{aligned}
$$

$$
\left(1+H_{1}(s) H_{2}(s)\right) Y(s)=H_{1}(s) X(s)
$$

$$
\frac{Y(s)}{X(s)}=H(s)=\frac{H_{1}(s)}{1+H_{1}(s) H_{2}(s)}
$$

Example: Feedback Control

$r(t)$: reference signal to be tracked by $y(t)$ $H_{c}(s)$: controller, $H_{p}(s)$: system to be controlled - "plant"

$$
H(s)=\frac{H_{c}(s) H_{p}(s)}{1+H_{c}(s) H_{p}(s)}
$$

Example:

Take constant gain controller: $H_{c}(s)=K$

$$
H(s)=\frac{\frac{K}{M s}}{1+\frac{K}{M s}}=\frac{1}{\tau s+1} \quad \tau=\frac{M}{K}
$$

The Unilateral Laplace Transform

$$
\begin{equation*}
\mathcal{X}(s)=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t \tag{3}
\end{equation*}
$$

Identical to the bilateral Laplace transform if $x(t)=0$ for $t<0$.

Example: $\quad x(t)=e^{-a(t+1)} u(t+1)$

$$
\begin{array}{ll}
X(s)=\frac{e^{s}}{s+a} & \operatorname{Re}\{s\}>-a \\
\mathcal{X}(s)=\frac{e^{-a}}{s+a} & \operatorname{Re}\{s\}>-a
\end{array}
$$

Properties of the unilateral Laplace transform
Most properties of the bilateral Laplace transform also hold for the unilateral Laplace transform.

Exceptions:
Convolution:

$$
x_{1}(t) * x_{2}(t) \longleftrightarrow \mathcal{X}_{1}(s) \mathcal{X}_{2}(s) \text { if } x_{1}(t)=x_{2}(t)=0 \text { for all } t<0
$$

This follows from the convolution property of the bilateral Laplace transform which coincides with the unilateral transform because
$x_{1}(t)=x_{2}(t)=0, t<0$.

Differentiation in Time:

$$
\frac{d x(t)}{d t} \longleftrightarrow s \mathcal{X}(s)-x\left(0^{-}\right)
$$

Repeated application gives:

$$
\begin{aligned}
& \frac{d^{2} x(t)}{d t^{2}}=\frac{d}{d t}\left\{\frac{d x(t)}{d t}\right\} \longleftrightarrow s\left(s \mathcal{X}(s)-x\left(0^{-}\right)\right)-\frac{d x}{d t}\left(0^{-}\right) \\
&=s^{2} \mathcal{X}(s)-s x\left(0^{-}\right)-\frac{d x}{d t}\left(0^{-}\right) \\
& \frac{d^{3} x(t)}{d t^{3}}=\frac{d}{d t}\left\{\frac{d^{2} x(t)}{d t^{2}}\right\} \longleftrightarrow s\left(s^{2} \mathcal{X}(s)-s x\left(0^{-}\right)-\frac{d x}{d t}\left(0^{-}\right)\right)-\frac{d^{2} x}{d t^{2}}\left(0^{-}\right) \\
&=s^{3} \mathcal{X}(s)-s^{2} x\left(0^{-}\right)-s \frac{d x}{d t}\left(0^{-}\right)-\frac{d^{2} x}{d t^{2}}\left(0^{-}\right)
\end{aligned}
$$

Solving differential equations with the unilateral Laplace transform
Example:

$$
\begin{equation*}
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y}{d t}+2 y(t)=e^{t} \quad t \geq 0 \tag{4}
\end{equation*}
$$

Initial condition $y\left(0^{-}\right)=a, \frac{d y}{d t}\left(0^{-}\right)=b$.

$$
\begin{gathered}
\left(s^{2} Y(s)-a s-b\right)+3(s Y(s)-a)+2 Y(s)=\frac{1}{s-1} \\
\left(s^{2}+3 s+2\right) Y(s)=a s+b+3 a+\frac{1}{s-1}=\frac{a s^{2}+(b+2 a) s+(1-b-3 a)}{s-1} \\
Y(s)=\frac{a s^{2}+(b+2 a) s+(1-b-3 a)}{(s+1)(s+2)(s-1)}
\end{gathered}
$$

Partial fraction expansion:

$$
\begin{aligned}
Y(s) & =\frac{A_{1}}{s+1}+\frac{A_{2}}{s+2}+\frac{B}{s-1} \\
& =\frac{\left(A_{1}+A_{2}+B\right) s^{2}+\left(A_{1}+3 B\right) s+\left(2 B-2 A_{1}-A_{2}\right)}{(s+1)(s+2)(s-1)}
\end{aligned}
$$

Match coefficients:

$$
\left.\begin{array}{rl}
A_{1}+A_{2}+B & =a \\
A_{1}+3 B & =b+2 a \\
2 B-2 A_{1}-A_{2} & =1-b-3 b
\end{array}\right\} \begin{aligned}
B & =1 / 6 \\
A_{1} & =-\frac{1}{2}+2 a+b \\
A_{2} & =\frac{1}{3}-a-b
\end{aligned}
$$

Then,

$$
y(t)=\frac{1}{6} e^{t}+\left(-\frac{1}{2}+2 a+b\right) e^{-t}+\left(\frac{1}{3}-a-b\right) e^{-2 t} \quad t \geq 0 .
$$

Compare this to the standard method for solving linear constant coefficient differential equations:

The first term in $y(t)$ above is the particular solution. If we substitute $y_{p}(t)=\frac{1}{6} e^{t}$ in (4):

$$
\frac{d^{2} y_{p}(t)}{d t^{2}}+3 \frac{d y_{p}}{d t}+2 y_{p}(t)=e^{t} .
$$

The second and third terms constitute the homogeneous solution. If we substitute $y_{h}(t)=A_{1} e^{-t}+A_{2} e^{-2 t}$:

$$
\frac{d^{2} y_{h}(t)}{d t^{2}}+3 \frac{d y_{h}}{d t}+2 y_{h}(t)=0
$$

Thus, $y(t)=y_{p}(t)+y_{h}(t)$ and A_{1} and A_{2} are selected to satisfy the initial conditions.

