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All-Pass Systems
Section 9.4.3 in Oppenheim & Willsky
What is the frequency response of an LTI system with transfer func-

tion:
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General all-pass system:
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For a stable and causal all-pass system, all zeros are in the right half-
plane because they are mirror images of the poles.

Although |Hyp (jw)| = 1, an all-pass system introduces delay:

ejwt N Hap(jw) N Hap(]-w)ejwt — ejL{Hap(jw)ejwt _ ejw(t—'r(w))

where: CH
T(w) 2 —w > 0.

Moreover, the system is not linear phase (i.e. T(w) is not constant);
therefore it causes phase distortion. (Recall Lecture 8.)

Minimum Phase Systems

A stable and causal LTI system is called minimum phase if all of its
zeros are in the open left half-plane.
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Any non-minimum phase transfer function H(s) can be decomposed
as:

H(S) = Hmin(s) Hap(s) (2)

min-phase all-pass

This decomposition explains the genesis of the term minimum phase:
[H(jw)| = [Hpin(jew)| since |Hap(jw)| =1,

but the all-pass component adds more delay. Therefore, H(s) and
H,in(s) have identical frequency responses in magnitude, but H,,;,(s)
has the minimum phase delay.
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Example:
Ha(s) He(s) —
distorting system, compensating
e.g.,comm.channel system
If H;(s) is minimum phase, we can simply choose H.(s) = Hdl(s).
If Hy(s) is nonminimum phase, Hc(s) = % is unstable. To avoid

instability, decompose: H(s) = Hypin(s)Haap(s) and select:

1

HC(S) - Hd,min (S)

= Ha(s)He(s) = Hygp(s)

magnitude distortion eliminated



EE120 - FALL’15 - LECTURE 16 NOTES

Transfer Functions of Interconnected LTI Systems
Section 9.8 in Oppenheim & Willsky

Example: Feedback Control

T(t){fﬂ () L, ) y(t)

r(t): reference signal to be tracked by y(t)

Hc(s): controller, Hy(s): system to be controlled - “plant”

H.(s)H
H(s) = c(s)Hp(s)
1 + Hc(S)Hp(S)
Example:
x(t): force y(t): speed dy — x(t Y(s) = X
e [y [ MY — x(t) — Ms¥(s) = X(5)
1
OO Hy(s) = 11
Take constant gain controller: H.(s) = K
r(t)
K
Hs)= M= o o= Mo
1+ i Ts +
y(t) for smaller T t

(larger K)
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The Unilateral Laplace Transform
Section 9.9 in Oppenheim & Willsky

X(s) = /io x(t)e sdt (3)

Identical to the bilateral Laplace transform if x(¢) = 0 for ¢ < 0.

1
Bxample: - x(r) = e~ Vu(t + 1)
e—a
1 | ¢
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X(s) = P Re{s} > —a
e*ﬂ
X(s) = o Re{s} > —a

Properties of the unilateral Laplace transform

Most properties of the bilateral Laplace transform also hold for the
unilateral Laplace transform.

Exceptions:
Convolution:
x1(t) % xp(t) — Xp(s)Xa(s) if x1(t) = x2(t) =0forallt <0

This follows from the convolution property of the bilateral Laplace
transform which coincides with the unilateral transform because
X1(i’) = XZ(t) =0,t<0.

Differentiation in Time:

dx(t)
dt

+——sX(s)—x(07)

Repeated application gives:
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Solving differential equations with the unilateral Laplace transform

Example:

d%y(t d
;/tg)wd%uy(t):ef >0 1)

Initial condition y(0~) = 4, %(O_) =b.

(FY(5) ~ a5 — )+ 3(sY () ) +2¥(s) = Ly

s—

(s +3s+2)Y(s) =as+b+3a+ 1 = asZJF(bH?fT(l_b_Sﬂ)

_ as®+(b+2a)s+(1—b—3a)
Y() = = emeeD

Partial fraction expansion:

A As B
Y(s) = s+1+s+2+s—1
(A1 + Az + B)s?> + (A1 +3B)s+ (2B — 2A; — Ap)

(s+1)(s+2)(s—1)

Match coefficients:

Ai+A+B = a B = 1/6
A1+3B = b+2a A = —%—O—Za—i—b
2B—2A,—Ay — 1—b-3b | Ay — Loa—b

Then,

y(t):éet+<—+2a+b>et+<;—a—b)e2t t>0.

Compare this to the standard method for solving linear constant
coefficient differential equations:

The first term in y(t) above is the particular solution. If we substitute
yp(t) = ge' in (4):

d*yp(t) | . dy
dfz +3d—tp +2y,(t) = €.

The second and third terms constitute the homogeneous solution. If
we substitute y;,(t) = Aje™! + Aye=2:
dyn

d?yy (t
Zfz( ) +350 2, (1) = 0.

Thus, y(t) = y,(t) + yx(t) and Ay and A are selected to satisfy the
initial conditions.
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