EE120-Fall'15-Lecture 15 Notes 1

Murat Arcak
21 October 2015

Analysis of LTI Systems using the Laplace Transform

$$
x(t) \rightarrow h(t) \rightarrow y(t) \quad Y(s)=H(s) X(s)
$$

Causality: $h(t)=0 \forall t<0$
Stability: $\int_{-\infty}^{\infty}|h(t)| d t<\infty$

Determining Causality and Stability from $H(s)$

Causality: If $H(s)$ is rational, causality is equivalent to the ROC being the half plane to the right of the rightmost pole.

Example: $h(t)=e^{-t} u(t)$

$$
H(s)=\frac{1}{s+1} \operatorname{Re}\{s\}>-1
$$

Example (why rationality of $H(s)$ matters):

$$
h(t)=e^{-(t+1)} u(t+1)
$$

(right-sided but not causal)

$$
\begin{aligned}
& H(s)=\frac{e^{s}}{s+1} \longrightarrow \quad \begin{array}{l}
\text { Not rational. If you don't check for rationality } \\
\text { first, you can falsely conclude causality from }
\end{array} \\
& \operatorname{Re}\{s\}>-1 \text { the ROC. }
\end{aligned}
$$

Stability: An LTI system is stable if and only if the ROC of $H(s)$ includes the imaginary axis.
Example:

$$
H(s)=\frac{s-1}{(s+1)(s-2)}=\frac{2 / 3}{s+1}+\frac{1 / 3}{s-2}
$$

${ }^{1}$ Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Possibilities for ROC:

unstable

stable

unstable

Note that the same conclusion can be reached by applying the absolute integrability test to $h(t)$:

1. $h(t)=\left(\frac{2}{3} e^{-t}+\frac{1}{3} e^{2 t}\right) u(t) \quad$ not absolutely integrable
2. $h(t)=\frac{2}{3} e^{-t} u(t)-\frac{1}{3} e^{2 t} u(-t) \quad$ absolutely integrable
3. $h(t)=-\left(\frac{2}{3} \underline{e^{-t}}+\frac{1}{3} e^{2 t}\right) u(-t) \quad$ not absolutely integrable

Simpler stability test with additional causality assumption:
A causal LTI system with rational $H(s)$ is stable if and only if all poles of $H(s)$ are in the open left half-plane, i.e., all poles have negative real parts.

Note: "Open" left half-plane means that the imaginary axis is excluded.
Example (poles on the imaginary axis cause instability):

$$
H(s)=\frac{1}{s} \quad(\text { integrator })
$$

If the input is $x(t)=u(t)$, then $X(s)=\frac{1}{s}$ and $Y(s)=H(s) X(s)=\frac{1}{s^{2}}$. Then, $y(t)=t u(t)$ which is unbounded although the input $x(t)$ is bounded.

Example (Butterworth filters):

$$
|H(j \omega)|^{2}=\frac{1}{1+\left(\omega / \omega_{c}\right)^{2 N}} \quad \omega_{c}: \text { cutoff frequency, } N: \text { filter order }
$$

Derive the transfer function of a causal and stable LTI system with real-valued $h(t)$ that gives this frequency response.

$$
|H(j \omega)|^{2}=H(j \omega) \underbrace{H^{*}(j \omega)}_{\begin{array}{c}
H(-j \omega) \\
\text { since } h(t) \text { is real }
\end{array}}=\frac{1}{1+\left(\frac{j \omega}{j \omega_{c}}\right)^{2 N}} \Longrightarrow H(s) H(-s)=\frac{1}{1+\left(\frac{s}{j \omega_{c}}\right)^{2 N}}
$$

Thus, the roots of $1+\left(\frac{s}{j \omega_{c}}\right)^{2 N}=0$ are the poles of $H(s)$ combined with the poles of $H(-s)$.

$$
\begin{aligned}
\frac{s}{j \omega_{c}} & =e^{j\left(\frac{\pi}{2 N}+k \frac{2 \pi}{2 N}\right)} \quad k=0,1, \ldots, 2 N-1 \\
s & =\underbrace{e^{j \frac{\pi}{2}}}_{j} \omega_{c} e^{j\left(\frac{\pi}{2 N}+k \frac{2 \pi}{2 N}\right)}
\end{aligned}
$$

Since the filter is to be causal and stable, $H(s)$ must contain the N poles in the left-half plane $(k=0,1, \ldots, N-1)$ and $H(-s)$ must contain the rest $k=N, \ldots, 2 N-1$.

Denominator of $H(s)$ for $N=3$:

$$
\begin{aligned}
& \left(s+\omega_{c}\right) \underbrace{\left.\omega_{c} e^{j \frac{\pi}{3}}\right)\left(s+\omega_{c} e^{-j \frac{\pi}{3}}\right)}_{s^{2}+\underbrace{2 \cos \left(\frac{\pi}{3}\right) \omega_{c} s+\omega_{c}^{2}}_{=1}} \\
= & \left(s+\omega_{c}\right)\left(s^{2}+\omega_{c} s+\omega_{c}^{2}\right)=s^{3}+2 \omega_{c} s^{2}+2 \omega_{c}^{2} s+\omega_{c}^{3}
\end{aligned}
$$

Therefore, $H(s)=\frac{\omega_{c}^{3}}{s^{3}+2 \omega_{c} s^{2}+2 \omega_{c}^{2} s+\omega_{c}^{3}}$ (so that $H(0)=$ dc-gain $=1$)
Normalized transfer function for the $N=3$ example above:

$$
H^{0}(s)=\frac{1}{s^{3}+2 s^{2}+2 s+1} \quad H(s)=H^{0}\left(\frac{s}{\omega_{c}}\right) \quad \text { for any desired } \omega_{c}
$$

Evaluating the Frequency Response from the Pole-Zero Plot
Example: $H(s)=\frac{1}{s+1} \quad|H(j \omega)|=\frac{1}{|j \omega+1|}$

Example: $H(s)=\frac{s+1}{s+10}$

compare to Bode plots: $H(j \omega)=\frac{1}{10} \frac{1+j \omega}{1+j \omega / 10}$

Example (second order system):

$$
\begin{align*}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \tag{1}\\
H(j \omega) & =\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \zeta \omega_{n}(j \omega)+\omega_{n}^{2}}
\end{align*}
$$

ζ : damping ratio, ω_{n} : natural frequency
Recall: resonance occurs if $\zeta<\frac{1}{\sqrt{2}} \approx 0.7$
Poles of $H(s): s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0$, or $\left(\frac{s}{\omega_{n}}\right)^{2}+2 \zeta\left(\frac{s}{\omega_{n}}\right)+1=0$.
Then, $\frac{s}{\omega_{n}}=-\zeta \mp \sqrt{\zeta^{2}-1}$
Therefore, complex conjugate poles if $\zeta<1$:

$$
s_{1,2}=\omega_{n}(-\cos (\theta) \mp j \sin (\theta)) \text { where } \theta \text { defined by } \cos \theta=\zeta
$$

See Figure 1 below which we discussed in Lecture 5.

Figure 1: The frequency, impulse, and step responses for the second order system (1). Note from the frequency response (top) that a resonance peak occurs when $\zeta<0.7$.

