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Analysis of LTI Systems using the Laplace Transform
Section 9.7 in Oppenheim & Willsky

x(t) → h(t) → y(t) Y(s) = H(s)X(s)

Causality: h(t) = 0 ∀t < 0

Stability:
∫ ∞
−∞ |h(t)|dt < ∞

Determining Causality and Stability from H(s)

Causality: If H(s) is rational, causality is equivalent to the ROC being
the half plane to the right of the rightmost pole.

Example: h(t) = e−tu(t)

H(s) =
1

s + 1
Re{s} > −1

Example (why rationality of H(s) matters):

h(t) = e−(t+1)u(t + 1)

(right-sided but not causal)
t

1

−1

H(s) =
es

s + 1
−→

Re{s} > −1

Not rational. If you don’t check for rationality
first, you can falsely conclude causality from
the ROC.

Stability: An LTI system is stable if and only if the ROC of H(s)
includes the imaginary axis.

Example:

H(s) =
s− 1

(s + 1)(s− 2)
=

2/3
s + 1

+
1/3
s− 2
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Possibilities for ROC:

unstable

1 imaginary axis

stable

2

unstable

3

Note that the same conclusion can be reached by applying the abso-
lute integrability test to h(t):

1. h(t) =
(

2
3 e−t + 1

3 e2t
)

u(t)

2. h(t) = 2
3 e−tu(t)− 1

3 e2tu(−t)

3. h(t) = −
(

2
3 e−t + 1

3 e2t
)

u(−t)

not absolutely integrable

absolutely integrable

not absolutely integrable

Simpler stability test with additional causality assumption:

A causal LTI system with rational H(s) is stable if and only if all
poles of H(s) are in the open left half-plane, i.e., all poles have

negative real parts.

Note: ”Open” left half-plane means that the imaginary axis is ex-
cluded.
Example (poles on the imaginary axis cause instability):

H(s) =
1
s

(integrator)

If the input is x(t) = u(t), then X(s) = 1
s and Y(s) = H(s)X(s) = 1

s2 .
Then, y(t) = tu(t) which is unbounded although the input x(t) is
bounded.

Example (Butterworth filters):

|H(jω)|2 =
1

1 + (ω/ωc)2N ωc : cutoff frequency, N : filter order

ωωc

1
1√
2

|H(jω)|
larger N:

sharper transition

Derive the transfer function of a causal and stable LTI system with
real-valued h(t) that gives this frequency response.
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|H(jω)|2 = H(jω)H∗(jω)︸ ︷︷ ︸
H(−jω)

since h(t) is real

=
1

1 +
(

jω
jωc

)2N =⇒ H(s)H(−s) =
1

1 +
(

s
jωc

)2N

Thus, the roots of 1 +
(

s
jωc

)2N
= 0

︸ ︷︷ ︸
are the poles of H(s) combined

with the poles of H(−s).

s
jωc

= ej( π
2N +k 2π

2N ) k = 0, 1, ..., 2N − 1

s = ej π
2︸︷︷︸

j

ωcej( π
2N +k 2π

2N )

k = 4

k = 1

k = 5k = 0

30o

k = 2 k = 3︸ ︷︷ ︸
H(−s)

︸ ︷︷ ︸
H(s)

N = 3

Since the filter is to be causal and stable, H(s) must contain the N
poles in the left-half plane (k = 0, 1, ..., N − 1) and H(−s) must
contain the rest k = N, ..., 2N − 1.

Denominator of H(s) for N = 3:

(s + ωc)(s + ωcej π
3 )(s + ωce−j π

3 )︸ ︷︷ ︸
s2+2cos(

π

3
)

︸ ︷︷ ︸
=1

ωcs+ω2
c

= (s + ωc)(s2 + ωcs + ω2
c ) = s3 + 2ωcs2 + 2ω2

c s + ω3
c

Therefore, H(s) = ω3
c

s3+2ωcs2+2ω2
c s+ω3

c
(so that H(0) = dc-gain = 1)

Normalized transfer function for the N = 3 example above:

H0(s) =
1

s3 + 2s2 + 2s + 1
H(s) = H0

(
s

ωc

)
for any desired ωc
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Evaluating the Frequency Response from the Pole-Zero Plot
Section 9.4 in Oppenheim & Willsky

Example: H(s) = 1
s+1 |H(jω)| = 1

|jω+1|

jω − (−1)
= jω + 1

−1

jω

Re

Im
jω

+
1

jω

Re

Im

∡jω + 1

ω

1

|H(jω)|

ω

−90o

∡H(jω)

Example: H(s) = s+1
s+10

j
ω

+
1

jω
+

10

jω

−1−10 Re

Im

∡H(jω)

ω

1

1/10

|H(jω)|

ω

∡H(jω)

compare to Bode plots: H(jω) = 1
10

1+jω
1+jω/10

ω

20log10|H(jω)|

1 10 100

0dB

−20dB

ω

∡|H(jω)|

1 10 100

π/4

π/2
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Example (second order system):

H(s) =
ω2

n
s2 + 2ζωns + ω2

n
(1)

H(jω) =
ω2

n
(jω)2 + 2ζωn(jω) + ω2

n

ζ : damping ratio, ωn : natural frequency

Recall: resonance occurs if ζ < 1√
2
≈ 0.7

Poles of H(s): s2 + 2ζωns + ω2
n = 0, or

(
s

ωn

)2
+ 2ζ

(
s

ωn

)
+ 1 = 0.

Then, s
ωn

= −ζ ∓
√

ζ2 − 1

Therefore, complex conjugate poles if ζ < 1:

s1,2 = ωn(−cos(θ)∓ jsin(θ)) where θ defined by cosθ = ζ

jωnsinθ

−jωncosθ Re

Im

θ

ωn

Resonance condition ζ < 1√
2

means θ > 45o

jωnsinθ

= jωn

q

1 − ζ2

Re

Im

ω

|H(jω)|

1

peak at ω = ωn

√
1 − 2ζ2

See Figure 1 below which we discussed in Lecture 5.
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Figure 1: The frequency, impulse, and
step responses for the second order
system (1). Note from the frequency
response (top) that a resonance peak
occurs when ζ < 0.7.
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