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The Laplace Transform continued

X(s) =
∫ ∞

−∞
x(t)e−stdt

If the ROC contains the imaginary axis, then the Fourier transform is
obtained by setting s = jω in the Laplace transform:

X(jω) =
∫ ∞

−∞
x(t)e−jωtdt.

Properties of the Laplace Transform
Section 9.5 in Oppenheim & Willsky

Assume that x(t) L↔ X(s) with ROC = R.

Linearity:

ax1(t) + bx2(t)
L←→ aX1(s) + bX2(s) (1)

ROC contains R1 ∩ R2, but can be larger: e.g., if x1(t) = x2(t) and
a=−b, then ax1(t) + bx2(t) ≡ 0 and ROC is the entire complex plane.

Time-Shift:

x(t− t0)↔ e−st0 X(s) (2)

ROC unchanged because:∫ ∞

−∞
x(t− t0︸ ︷︷ ︸

,τ

)e−stdt =
∫ ∞

−∞
x(τ)e−sτe−st0 dτ = e−st0︸︷︷︸

this factor
doesn’t change

convergence

∫ ∞

−∞
x(τ)e−sτdτ︸ ︷︷ ︸

X(s)

Shifting in the s-Domain:

es0tx(t) L←→ X(s− s0) ROC = R + Re{s0} (3)

Compare to: ejω0tx(t) F←→ X(j(ω−ω0)) in Fourier transforms.

Time-Scaling:

x(at) L←→ 1
|a|X

( s
a

)
ROC = a · R (4)

In particular, x(−t) L←→ X(−s), with ROC = −R.
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Example:

cos(ω0t)u(t) L←→ s
s2 + ω2

0
Re{s} > 0

cos(−ω0t)u(−t) = cos(ω0t)u(−t) L←→ −s
s2 + ω2

0
Re{s} < 0

Conjugation:

x∗(t) L←→ X∗(s∗) ROC unchanged (5)

Therefore, if x(t) is real: X(s) = X∗(s∗)

Equivalent property in Fourier transforms: x∗(t) F←→ X∗(−jω)

Convolution:

x1(t) ∗ x2(t)
L←→ X1(s)X2(s) ROC contains R1 ∩ R2 (6)

Differentiation in Time Domain:

dx(t)
dt

L←→ sX(s) ROC contains R but can be larger (7)

Example:

x(t) = u(t) L←→ X(s) =
1
s

R = {s : Re{s} > 0}
dx(t)

dt
= δ(t) L←→ 1 for all s ROC : entire complex plane

Example:

x(t) = sin(ω0t)u(t) L←→ ω0

s2 + ω2
0

Re{s} > 0

dx(t)
dt

= ω0cos(ω0t)u(t) L←→ ω0s
s2 + ω2

0
Re{s} > 0

Differentiation in the s-Domain:

−tx(t) L←→ dX(s)
ds

ROC unchanged for exponential signals (8)

Proof: X(s) =
∫ ∞
−∞ x(t)e−stdt then dX(s)

ds =
∫ ∞
−∞−tx(t)e−stdt.
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Example:

e−atu(t) L←→ 1
s + a

te−atu(t) L←→ − d
ds

(
1

s + a

)
=

1
(s + a)2

t2e−atu(t) L←→ − d
ds

(
1

(s + a)2

)
=

2
(s + a)3

...

tne−atu(t) L←→ n!
(s + a)n+1

with Re{s} > −a for all cases.

Special case a = 0: u(t)↔ 1
s , tu(t)↔ 1

s2 , ..., tnu(t)↔ n!
sn+1

Example: Partial fraction expansion for repeated poles

Given ROC = {s : Re{s} > −1}, find the inverse Laplace transform
for:

X(s) =
1

(s + 1)(s + 2)2 .

X(s) =
1

(s + 1)(s + 2)2 =
A1

s + 1
+

A21

s + 2
+

A22

(s + 2)2

=
A1(s + 2)2 + A21(s + 1)(s + 2) + A22(s + 1)

(s + 1)(s + 2)2

(A1 + A21)︸ ︷︷ ︸
=0

s2 + (4A1 + 3A21 + A22)︸ ︷︷ ︸
=0

s + (4A1 + 2A21 + A22)︸ ︷︷ ︸
=1

= 1

=⇒ A1 = 1, A21 = A22 = −1

X(s) =
1

s + 1
− 1

s + 2
− 1

(s + 2)2 ↔ x(t) = (e−t − e−2t − te−2t)u(t)

Integration in Time:

∫ t

−∞
x(τ)dτ

L←→ 1
s

X(s) ROC contains R ∩ {s : Re{s} > 0} (9)

Follows from the convolution property:
∫ t
−∞ x(τ)dτ = x(t) ∗ u(t).

Example: x(t) = δ(t)↔ 1 ∀s,
∫ t
−∞ x(τ)dτ = u(t)↔ 1

s Re{s} > 0.

Initial Value Theorem:
If x(t) = 0 for all t < 0 and contains no impulses or singularities at
t = 0,

x(0+) = lim
s→∞

sX(s) (10)
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Example:

e−atu(t)↔ 1
s + a

lim
s→∞

s
s + a

= 1 = e−atu(t)|t=0+ t

1 e−at

Final Value Theorem:
If x(t) = 0 for all t < 0 and x(t) has a finite limit as t→ ∞, then

lim
t→∞

x(t) = lim
s→0

sX(s) (11)

Transfer Functions of LTI Systems
Section 9.7 in Oppenheim & Willsky

x(t) → h(t) → y(t)

From the convolution property:

Y(s) = H(s)X(s)

where H(s) =
∫ ∞
−∞ h(t)e−stdt is called the “transfer function” or

“system function."

Figure 1: Oliver Heaviside (1850-1925),
a self-taught electrical engineer, in-
vented the "operational calculus" where
the differential operator d

dt is treated as
a symbol (’s’ in our case) and a linear
differential equation is manipulated
algebraically. Dynamic circuit elements
could now be represented with simple
algebraic expressions similar to Ohm’s
Law (e.g. Ls for inductance). Heavi-
side’s method had found widespread
use by the time others established the
full mathematical justification with the
help of a transform used by Laplace a
century earlier. Heaviside had many
other contributions, including condens-
ing Maxwell’s theory of electromag-
netism into the four vector equations
known today. He further coined the
terms "inductance" and "impedance,"
and the unit step u(t) is sometimes
referred to as the Heaviside function.

Finding the transfer function from differential equations

N

∑
k=0

ak
dky(t)

dtk =
M

∑
k=0

bk
dkx(t)

dtk

Take the Laplace transform of both sides and use differentiation
property:

N

∑
k=0

akskY(s) =
M

∑
k=0

bkskX(s)

H(s) =
Y(s)
X(s)

=
∑M

k=0 bksk

∑N
k=0 aksk

=
bMsM + bM−1sM−1 + ... + b0

aNsN + aN−1sN−1 + ... + a0

Poles of the system: roots of aNsN + aN−1sN−1 + ... + a0

Zeros of the system: roots of bMsM + bM−1sM−1 + ... + b0
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Example:

+−

R L

Cx(t) y(t)

−

+

i

y(t) + L
di
dt

+ Ri = x(t)

Substitute i = C dy
dt :

LC
d2y
dt2 + RC

dy
dt

+ y(t) = x(t).

Therefore,

H(s) =
1

LCs2 + RCs + 1
.

Poles: −RC∓
√

R2C2−4LC
2LC . No zeros.

How do poles affect the system response?

If there are no repeated poles, partial fraction expansion gives:

H(s) =
N

∑
i=1

Ai
s− αi

(12)

where αi, i = 1, ..., N, are the poles. Then, assuming causality:

h(t) =
N

∑
i=1

Aieαitu(t) (13)

Each pole αi contributes an exponential term eαit to the response.2 2 See Figure 2 on the next page which
we discussed in Lecture 2.

If αi is repeated m times, then the system response includes:

tm−1eαit, ..., teαit, eαit

Example: In the RLC circuit above, we expect oscillatory response if

R2C2 < 4LC.

How do zeros affect the system response?

Suppose s = β is a zero of H(s), i.e., H(β) = 0. Then:

eβt → h(t) → y(t) = H(β)eβt = 0
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Thus, the zero s = β blocks inputs of the form eβt from appearing at
the output.

Example: Consider the RLC circuit above and redefine the output to

be the current instead of the capacitor voltage: y(t) , i(t). Then,

C
d
dt

(
x(t)− Ry(t)− L

dy
dt

)
︸ ︷︷ ︸

voltage across capacitor

= y(t).

Rearrange terms:

LC
d2y
dt2 + RC

dy
dt

+ y = C
dx
dt

.

Then, the transfer function is:

H(s) =
Cs

LCs2 + RCs + 1
.

Zero at s = 0 blocks constant inputs: When x(t) = e0t ≡ 1, y(t) ≡ 0.
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Im{s} Figure 2: The real part of est for various
values of s in the complex plane.
Note that est is oscillatory when s has
an imaginary component. It grows
unbounded when Re{s} > 0, decays to
zero when Re{s} < 0, and has constant
amplitude when Re{s} = 0.
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