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Linear Time-Invariant (LTI) Systems

y(t)x(t)

Linearity: Two conditions must be satisfied:
1. Scaling:

ax(t)→ ay(t) for any number a; (1)

2. Superposition:

x1(t) + x2(t)→ y1(t) + y2(t). (2)

Corollary: If the input to a linear system is 0, the output must be 0.
Proof. Choose a = 0 in the scaling property.

Time-Invariance:A time shift in the input results is an identical time
shift in the output:

x(t− T)→ y(t− T). (3)

Example: Moving average filter:

y[n] =
1
3
(x[n− 1] + x[n] + x[n + 1])→ LTI. (4)

Example: Median Filter:

y[n] = med{x[n− 1], x[n], x[n + 1]} → TI, but nonlinear. (5)
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Discrete-Time (DT) LTI Systems: Convolution Sum
Section 2.1 in Oppenheim & Willsky

Let h[n] denote the response of an LTI system to the unit impulse:

1 δ[n]

n

Then, for any input x[n], the output is:

y[n] =
∞

∑
k=−∞

x[k]h[n− k] ”convolution sum” (6)

Proof. Rewrite x[n] as

x[n] = ... + x[−1]δ[n + 1] + x[0]δ[n] + x[1]δ[n− 1] + ... (7)

=
∞

∑
k=−∞

x[k]δ[n− k] (8)

Since δ[n]→ h[n], by time-invariance: δ[n− k]→ h[n− k].
Then, by linearity: ∑k x[k]δ[n− k]→ ∑k x[k]h[n− k].

Example: For the moving average system above,
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y[n] =
∞

∑
k=−∞

x[k]h[n− k]

=
n+1

∑
k=n−1

1
3

x[k] =
1
3
(x[n− 1] + x[n] + x[n + 1]) (9)

Example: For the median filter:

δ[n]

n

h[n]

n

Since the system is nonlinear, we can’t use convolution to predict the
output.

Continuous-Time (CT) LTI Systems: Convolution Integral
Section 2.2 in Oppenheim & Willsky

Unit impulse:
δ(t) , lim

∆→0
δ∆(t) (10)

∆ t

1
∆ δ∆(t)

Figure 1: δ∆(t)

where δ∆(t) is as in Figure 1.

Let h(t) denote the response of a LTI system to δ(t).
Then, for any input x(t), the output is :

y(t) =
∫ ∞

−∞
x(τ)h(t− τ)dτ ”convolution integral” (11)

Proof. First, note that the staircase approximation in Figure 2 recovers
x(t) as ∆→ 0:

x(t) = lim
∆→0

∞

∑
k=−∞

x(k∆)∆δ∆(t− k∆). (12)

Next, let h∆(t) denote the response of the system to δ∆(t) and note
from the LTI property that the response to each term in the sum
above is x(k∆)∆h∆(t− k∆). Thus, the response to x(t) is

y(t) = lim
∆→0

∞

∑
k=−∞

x(k∆)h∆(t− k∆)∆ =
∫ ∞

−∞
x(τ)h(t− τ)dτ. (13)
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x(k∆)∆δ∆(t− k∆)

t
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∆ 2∆ · · · k∆

Figure 2: Staircase approximation of
x(t).

Properties of LTI Systems
Section 2.3 in Oppenheim & Willsky

We will denote the convolution operation by ′′∗′′.
1. Commutative Property:

x[n] ∗ h[n] = h[n] ∗ x[n] (14)

Proof.
∞

∑
k=−∞

x[k]h[n− k] =
∞

∑
r=−∞

x[n− r]h[r], (15)

with the change of variables (n− k) , r.

2. Distributive Property:

x[n] ∗ (h1[n] + h2[n]) = x[n] ∗ h1[n] + x[n] ∗ h2[n] (16)

h1[n]

h2[n]

x[n] y[n] ≡ x[n] h1[n] + h2[n] y[n]

3. Associative Property:

x[n] ∗ (h1[n] ∗ h2[n]) = (x[n] ∗ h1[n]) ∗ h2[n] (17)

x[n] h1[n] h2[n] y[n] ≡ x[n] h1[n] ∗ h2[n] y[n]

Combine this with the commutative property

h1[n] h2[n] ≡ h2[n] h1[n]

Properties 1,2,3 above also hold for CT systems.
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Determining Causality from the Impulse Response

For a DT LTI system, causality means:

h[n] = 0, ∀n < 0. (18)

For a CT LTI system, causality means:

h(t) = 0, ∀t < 0. (19)

Proof. Since y[n] = ∑∞
k=−∞ h[k]x[n− k], if h[k] 6= 0 for some k < 0, then

y[n] depends on x[n− k], where n− k > n.

Example: Moving average system above: h[−1] 6= 0→ noncausal.

Determining Stability from the Impulse Response

Stability criterion for a DT LTI system:

∞

∑
k=−∞

|h[k]| < ∞. (20)

Stability criterion for a CT LTI system:∫ ∞

−∞
|h(τ)|dτ < ∞. (21)

Proof.

Sufficiency: Suppose ∑∞
k=−∞ |h[k]| < ∞ and show that bounded

inputs give bounded outputs:
|x[n]| ≤ B for all n, for some B > 0.
|y[n]| = |∑k x[n− k]h[k]| ≤ ∑k |x[n− k]| · |h[k]| ≤ B ∑k |h[k]| < ∞.

Necessity: To prove ”stable⇒ ∑k |h[k]| < ∞” prove the contraposi-
tive:

′′∑
k
|h[k]| = ∞⇒ unstable.′′ (22)

Let x[n] = sgn{h[−n]}. Then, since y[n] = ∑∞
k=−∞ h[k]x[n− k]:

y[0] =
∞

∑
k=−∞

h[k]x[−k] = ∑
k

h[k]sign{h[k]} = ∑
k
|h[k]| = ∞. (23)

Examples:
1. Moving average system above:

∑
k
|h[k]| = 1

3
+

1
3
+

1
3
= 1→ stable. (24)

2. Integrator: y(t) =
∫ t
−∞ x(τ)dτ. h(t) is the unit step (see Figure 3), 1

t

Figure 3: UnitStep
and ∫ ∞

−∞
|h(τ)|dτ = ∞. (25)
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