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Thismateria isoptiona. It will be apreview for those of you who wish to take ee123.

1 Introduction

Previoudly, the discrete Fourier transform was introduced as
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and itsinverse transform as o1
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These transforms, if evaluated explicitly, would result in O(n?) operations. However, by taking advantage of
the properties of ¢/27/™V , the fast Fourier transform (FFT) reduces the number of operationsto O(nlog, n). If this
reduction appearstrivial, consider the case where n is 1024; explicit evaluation istwo orders of magnitude slower than
the FFT.

2 Mathematical Derivation of Time Decimation Algorithm

One of the more useful implementations of the FFT requires N to be apower of two. Given thisrestriction, we search
for a“divide-and-conquer” strategy that lets us dividean N point FFT intotwo 5 point FFTs, since smaller problems
are dways easier to work on than larger ones. Once these two smaler FFTs have been performed, their results are
then appropriately combined to give a solution for the original FFT.

Using the notation previoudly discussed in notes25, we can writethe N point DFT as

N-1
= aW ©)
n=0

where Wy = e=727/N_ Wy can be interpreted as the first of the N'th roots of unity, the other roots being the other
N — 1 powersof Wy.

If the sum above is divided into two separate sums, one of the even components of «[n] and the other of the odd
components of [n] (we are fortunatethat V is even), the DFT then becomes
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Thisdivisionintimeisaso referred to as “decimation in time”.
However, squaring Wy givesthefirst of the %th roots of unity. Symbolically,
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The DFT then simplifiesto
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But the first sum isthe % point FFT of the even components of x[n] and the second sum is W¥ multiplied by the %
point FFT of the odd components of 2[n]. We could stop here, having derived an expression for the NV point FFT in
terms of the sum of two £ point FFTs, but there isafurther simplification that we can do.

For thelast & termscorrespondmgtok =5 Y tok = N — 1, westart with Equation (10). Substitutingk = & + & >,
with &’ ranging from 0 to S -1
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Noting that
Whip' 2 =1"=1 (12)
and that
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we then simplify to obtain
N N/2—1 N/2—1
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Thefirst sumisthe £ point FFT of the even components of z[r] and the second sum is —W% multiplied by the N'/2
point FFT of the odd components of 2[n]. We now have found a formula for the last N/2 terms corresponding to
k=% tok=N-1

Equations (10) and (14) together constitute the FFT. Thisisthe pinnacle of life as you know it in ee120.

3 Implementation of Time Decimation Algorithm

In Figure1, an 8 point FFT has been implemented with adders and multipliers. In part (a), we expand the 8 point FFT
into two 4 point FFTs, along with machinery to reconstruct the 8 point FFT from its two smaller components. The
upper FFT takes the even components of «[n] as input, and the lower one takes the odd components. In part (b), we
expand the 4 point FFT intotwo 2 point FFTs, and in part (¢), that 2 point FFT reduces to atiny package of lines.

In part (d), we put everything back together. Thisartful maze of issometimesreferred to asthe” butterfly”, although
it looks more like a mutated spider to me. Your mileage may vary.

Note that the input to the 8 point FFT is not ordered as you would think. For an interesting method of determining
what that order should be, consider the fourth input, 2[6]. If we write 6 in binary, we would obtain 110. Reversing
those bits gives 011, which is the binary representation of 3. In general, the order of theinput is the bit-reversa of its
binary representation.

Note that even though there are n operations at every stage in the butterfly, there are only log, » stages. This gives
an order of growth of O(n log, n) for the FFT.

4 Summary

o Appropriately massaging the DFT produces the FFT.

¢ We have devel oped the time decimation version of the FFT:
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fork =0,1,..., N —1. Inother words, the N point FFT isjust the sum of the % point FFT of the even samples
of z[n] and an appropriately scaled 5 point FFT of the odd samples of z[n].

o Propertiesof Wy alow usto rewrite the above as
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The first equation gives X[k] for k = 0,1,..., 2 — 1, and the second equation gives X[k] for k = 5, & +
1. . N—1

e Theorder of growth of thisalgorithmis O(n log, n).
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(d) The whole mess.

Figure 1. Implementing the FFT.
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