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1 Fourier SeriesMeets Fourier Transform

Let z,(t) be a periodic signal, and z.,(t) be equd to x,(¢) over one period of z,(t), while being equal to zero
elsawhere. From the definition of the Fourier series analysisintegral, we have:

1 .
ag = T/Txp(t)e_]kwotdt

But since x4, () isequal to z, (¢) over asingle period, we can rewrite thisas:

1 /= .
ag = T/_Oo xap(t)e_]kwotdt

But thislooks quitea bit like the Fourier transform X, (w) of 4, (%):

1
ap = TXap (w)|w:kwo
We have found one relationship between the Fourier series coefficients and the Fourier transform of the underlying

aperiodic signdl. '
Earlier we derived the Fourier transform of a complex exponential: e/“% ¢+ 2w§(w — wo). Because any given
Fourier seriesisthe sum of scaled exponentialsand the Fourier transformisalinear operator:

.7:[ Z akejkwot] = Z akf[ejkwot]
k=—oc k=—oc
= 2n Z apd(w — kwo)
k=—oc

Of particular interest is the fact that an impulse train in time transforms into another impulse train in frequency:

FIY st—nT)] = ]-"[% D k]
n=-—00 k=—oc
21—
= Tk;mé(w_kWO)

We can then think of any periodic signal «,(t) as the convolution of the waveform for a single period =, (t)
convolved with an impul se train with the appropriate period:

2y (1) = 24p(1) % _Z §(t —nT)

In the frequency domain, we then have X ,,, (w) multiplied by another impulse train. But multiplying by an impulse
train just samples X, (w) to give X, (w):

P —
Xpw) = Xep) T D 8w —kwo)
k=—o0
o ——
= = > Xap(kwo)d(w — kwo)
k=—o0

= 2n Z apd(w — kwo)

k=—oc
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(a) the periodic extension of x(t)
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(b) frequency domain interpretation of the periodic extension
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Figure1: Another interpretation of the Fourier transform of a Fourier series.

wherein thelast linewe used our formulathat we derived above relating the FS coefficients aj, withthe FT of 4, ().
This processisillustrated in Figure 1.

So making something periodic in time corresponds to making its transform discrete in frequency. The converseis
also true: making something discrete in time corresponds to making its transform periodic in frequency. More on this
when we talk about discrete systems.

2 Filtering

Before, we briefly addressed the problem of constructing aredlizablefilter from an ided filter. We must do two things:
truncate the filter's impul se response in time so that it is no longer of infinite extent (really long convolutions are an
extreme drag) and delay the filter’simpul se response so that it iscausal. But what doesthat do to thefilter’s frequency
response?

Let’'s start with an ideal low pass filter with impulse response 4;(¢) and frequency response H; (w). The truncation
in time corresponds to multiplying /;(¢) by apulse in timeto give h;(¢). So we end up convolving our idea pulse
H;(w) by asincin frequency. Thisintroduces some rippleinto our resulting frequency response H:(w).

Now we need to delay h.(¢) by an appropriatetimer to make our filter causal. This correspondsto multiplyingour
frequency response H,(w) by e~7“7, introducing a linear phase factor into the entire mess. Sketching the magnitude
response | H,q4(w)| of our filter is relatively straightforward. However, the phase response 2 H4(w) is dlightly more
difficult. Not only do we have a linear phase factor, but the negative going parts of the sinc contribute = radians for
positivew and — radians for negative w (by convention, we choose + for positivew and —= for negative w).

Thisentire processisillustrated in Figure 2.

3 Sample Problems

[from fall94, midterm I1] The signal =(t) is passed through a low pass filter with frequency response H (w) [asin
Figure3]. Thesigna z(¢) contains asinusoidal component at 100kHz. Sketch y(¢), the output in time of thelow pass
filter for theinput «(¢).

Because 100kHz is grester than the cutoff frequency of our filter, the sinusoid goes away. However, since high
frequencies are cut off, thejumpsat ¢ = 0.1ms and ¢t = 0.2ms arerounded off. The filter also introduces someripple
into the output y(¢). Finally, we don’t know if our filter is causal, so we can sketch the output either causal or acausal.

[from fall94, ps6] An LTI system hasimpulseresponse h(t) = w. Find thetime output of the system for an
input of 60Hz even sguare wave with 50% duty cycle with zero average value and +1 peak to peak amplitude. Find
the time output of the system for an input z (¢) = S01900rt,

We've aready donethe response of an LTI system to aperiodic signal.

Exercise Verify that the system output y(t) = 40055 — %coslt@ in response to the square wave input.
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(a) ideal low pass filter with infinite extent sinc for impulse response
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Figure 2: The creation of arealizablefilter.
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Figure 3: A sample midterm problem.
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For the sincinput, we can takethe Fourier transform of theinput, get the frequency response of the system, multiply,
and then inverse Fourier transform.

Xw) = ”n(sc;doﬂ)

Hw) = wM(z555-)

Yw) = Hw)X(w)
= 7wH(w)

sin(400rt)
T it



