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Notes 12 largely plagiarized by %khc

1 Fourier Series Meets Fourier Transform

Let xp(t) be a periodic signal, and xap(t) be equal to xp(t) over one period of xp(t), while being equal to zero
elsewhere. From the definition of the Fourier series analysis integral, we have:
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But since xap(t) is equal to xp(t) over a single period, we can rewrite this as:
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But this looks quite a bit like the Fourier transform Xap(!) of xap(t):

ak =
1
T
Xap(!)j!=k!0

We have found one relationship between the Fourier series coefficients and the Fourier transform of the underlying
aperiodic signal.

Earlier we derived the Fourier transform of a complex exponential: ej!0t $ 2��(! � !0). Because any given
Fourier series is the sum of scaled exponentials and the Fourier transform is a linear operator:
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Of particular interest is the fact that an impulse train in time transforms into another impulse train in frequency:
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We can then think of any periodic signal xp(t) as the convolution of the waveform for a single period xap(t)
convolved with an impulse train with the appropriate period:
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In the frequency domain, we then have Xap(!) multiplied by another impulse train. But multiplying by an impulse
train just samples Xap(!) to give Xp(!):

Xp(!) = Xap(!)
2�
T

1X
k=�1

�(! � k!0)

=
2�
T

1X
k=�1

Xap(k!0)�(! � k!0)

= 2�
1X

k=�1

ak�(! � k!0)



EE120: Signals and Systems; v5.0.0 2

t

x(t)

=
t

......

x (t)p

t
......

Σ δ (t−nT)

(a) the periodic extension of x(t)

X (ω)

ω ω

X (ω)
p

......

Σ δ
2π
T ( ω −k

2π
T )

ω =

(b) frequency domain interpretation of the periodic extension

Figure 1: Another interpretation of the Fourier transform of a Fourier series.

where in the last line we used our formula that we derived above relating the FS coefficients ak with the FT of xap(t).
This process is illustrated in Figure 1.

So making something periodic in time corresponds to making its transform discrete in frequency. The converse is
also true: making something discrete in time corresponds to making its transform periodic in frequency. More on this
when we talk about discrete systems.

2 Filtering

Before, we briefly addressed the problem of constructing a realizable filter from an ideal filter. We must do two things:
truncate the filter’s impulse response in time so that it is no longer of infinite extent (really long convolutions are an
extreme drag) and delay the filter’s impulse response so that it is causal. But what does that do to the filter’s frequency
response?

Let’s start with an ideal low pass filter with impulse response hi(t) and frequency response Hi(!). The truncation
in time corresponds to multiplying hi(t) by a pulse in time to give ht(t). So we end up convolving our ideal pulse
Hi(!) by a sinc in frequency. This introduces some ripple into our resulting frequency response Ht(!).

Now we need to delay ht(t) by an appropriate time � to make our filter causal. This corresponds to multiplying our
frequency response Ht(!) by e�j!� , introducing a linear phase factor into the entire mess. Sketching the magnitude
response jHtd(!)j of our filter is relatively straightforward. However, the phase response 6 Htd(!) is slightly more
difficult. Not only do we have a linear phase factor, but the negative going parts of the sinc contribute � radians for
positive ! and �� radians for negative ! (by convention, we choose +� for positive ! and �� for negative !).

This entire process is illustrated in Figure 2.

3 Sample Problems

[from fall94, midterm II] The signal x(t) is passed through a low pass filter with frequency response H(!) [as in
Figure 3]. The signal x(t) contains a sinusoidal component at 100kHz. Sketch y(t), the output in time of the low pass
filter for the input x(t).

Because 100kHz is greater than the cutoff frequency of our filter, the sinusoid goes away. However, since high
frequencies are cut off, the jumps at t = 0:1ms and t = 0:2ms are rounded off. The filter also introduces some ripple
into the output y(t). Finally, we don’t know if our filter is causal, so we can sketch the output either causal or acausal.

[from fall94, ps6] An LTI system has impulse response h(t) = sin(400�t)
t

. Find the time output of the system for an
input of 60Hz even square wave with 50% duty cycle with zero average value and �1 peak to peak amplitude. Find
the time output of the system for an input x(t) = sin 1000�t

t
.

We’ve already done the response of an LTI system to a periodic signal.
Exercise Verify that the system output y(t) = 4 cos t

60 �
4
3 cos t

180 in response to the square wave input.
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(b) ideal impulse response is truncated by multiplication with a pulse

(c) frequency domain representation of (b)
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(d) truncated impulse response is delayed in time

ω

(ω)H
td

| |

=

(e) frequency domain representation of (d)
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Figure 2: The creation of a realizable filter.
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Figure 3: A sample midterm problem.
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For the sinc input, we can take the Fourier transform of the input, get the frequency response of the system, multiply,
and then inverse Fourier transform.

X(!) = �Π(
!

800�
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Y (!) = H(!)X(!)

= �H(!)

y(t) = �
sin(400�t)
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