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CHAPTER 1 ® INTRODUCTION

BROBLEMS

1.1

1.2

1.3

Find the even and odd components of each of
the following signals:
(a) x(¢) = cos(t) + sin(z) + sin(t) cos(t)
(b) x(t) = 1 + ¢ + 3t + 5¢ + 9¢t*
(c) x(t) = 1 + ¢t cos(t) + t* sin(¢)
+ 3 sin(t) cos(?)
(d) x(2) = (1 + #3) cos’(102)
Determine whether the following signals are pe-

riodic. If they are periodic, find the fundamental
period.

(a) x(t) = (cos(2m))*

(b) x(z) = Si-_s w(t — 2k) for w(t) depicted in
Fig. P1.2b.
(c) x(t) = Sf-_.. w(t — 3k) for w(z) depicted in
Fig. P1.2b.
d) x[n] = (=1)"
"

) x[n] = (-
) x[n] depicted in Fig. P1.2f.
g) x(z) depicted in Fig. P1.2g.
(h) x[n] = cos(2n)

(i) x[n] = cos(27n)
The sinusoidal signal

x(t) = 3 cos(200t + 7/6)

(
(e
(f
(

is passed through a square-law device defined by -

the input—output relation
y(t) = x*(t)
Using the trigonometric identity
cos?8 = (cos26 + 1)

1.4

show that the output y(¢) consists of a dc com-
ponent and a sinusoidal component.

(a) Specify the dc component.

(b) Specify the amplitude and fundamental fre-
quency of the sinusoidal component in the
output y(t).

Categorize each of the following signals as an

energy or power signal, and find the energy or

power of the signal.
t, 0=r=1
21 1=t=<2
0, otherwise
n, 0=n=S$

10-n, S5=n=10
0, otherwise

(c) x(t) = S cos(mt) + sin(57t),

—0 <t
Scos(mt), —-1l=t=1
(d) x(t) = {
0, otherwise
5 cos(wt), —05=t=05
(e} x

otherwise

sin(7n), —4=n= 4
otherwise

—-4=n=4

cos(mn
0, 0therw1se

(a) x(t) =

(b) x[n] =

—
-

=
lI

x[n

n=0

otherwise

COS 7rn

(b)

x(2)

a 4

5 4 3 2 -l 1

-1

'FIGURE P1.2



Problems

1.5 Consider the sinusoidal signal
x(t) = A cos{wt + ¢)

Determine the average power of x(¢).

1.6 The angular frequency Q of the sinusoidal signal
x[n] = A cos(Qn + ¢)
satisfies the condition for x[n] to be periodic.
Determine the average power of x[n].
1.7 The raised-cosine pulse x(¢) shown in Fig. P1.7
is defined as
ilcos(wt) + 1], —-wo <t = 7w
x(t) = .
0, otherwise
Determine the total energy of x(z).
x(t)
1.0
J— ; , t
—T/w 0 T/w
FiGURE P1.7

1.8 The trapezoidal pulse x(z) shown in Fig. P1.8 is
defined by

S5—t 4=t=<3$§
(1) = 1, —4=t=4
t+5 -S=t=-4
0, otherwise

Determine the total energy of x(t).

x(t)

S
-
-~

5 4 3 2 1 0 1 2 3
FIGURE P1.8

1.9 The trapezoidal pulse x(t) of Fig. P1.8 is applied
to a differentiator, defined by

d
y(t) = Z x(t)
(a) Determine the resulting output y() of the

differentiator.
{(b) Determine the total energy of y(t).
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1.10 A rectangular pulse x(z) is defined by

(1) = A O0=t=sT
x 0, otherwise

The pulse x(¢) is applied to an integrator defined
by

Find the total energy of the output y(#).

The trapezoidal pulse x(z) of Fig. P1.8 is time
scaled, producing

1.11

y(t) = x(at)

Sketch y(t) for (a) @ = 5 and (b) a = 0.2.

1.12 A triangular pulse signal x(¢) is depicted in Fig.
P1.12. Sketch each of the following signals de-
rived from x(z):

(a) x(31)
(b) x(3t + 2)

(c) x(=2t = 1)
(d) x(2(t + 2))
(e) x(2(r - 2))
(f) x(3t) x(3t + 2)

x(t)

1

, t
-1 0 1

FIGURE P1.12

1.13 Sketch the trapezoidal pulse y(z) that is related
to that of Fig. P1.8 as follows:

y(t) = x(10t — 5)

1.14 Let x(¢) and y(z) be given in Figs. P1.14(a) and
(b), respectively. Carefully sketch the following
signals:

(a) x(t)y(z — 1)

(b) x(t — 1)y(—1)
() x(t + 1)y(z - 2)
(d) x(t)y(—1 ~¢)
(e) x(t)y(2 — 1)
(f) x(2t)y(3t + 1)
(8) x(4 — tiy(2)

] R

g) x(4 —
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x(2) y(1) x(t)
1 1+ 3
N ¢ t _2L
-1 1 2 3 -2 -1 1 2 j ) I
|
-1 -1 T [ : _____ [
| | | |
i t t t t
@ ®) 4 -3 10 1 34
FIGURE P1.14 (a)
g
1.15 Figure P1.15(a) shows a staircase-like signal x(z) 1
that may be viewed as the superposition of four
rectangular pulses. Starting with the rectangular t
pulse g(t) shown in Fig. P1.15(b), construct this -1 1
waveform, and express x(t) in terms of g(z). )
FiGure P1.17
x(t)
M (e) x[n — 2] + yln + 2]
3p———— | (f) x[2n] + y[n — 4]
. e (&) xln + 2lyln — 2]
- 1 (h) x[3 — nlyin]
T (i) *[~nly[-7]
i .
—t—t t t () x[nly(—2 = =]
o 1 2 3 4 -1 0 1 (k) x[n + 2]y[6 — n]
(@) (b)
FIGURE P1.15
x[n]
<] 34 o
1.16 Sketch the waveforms of the following signals:
(a) x(2) = u(t) — u(t — 2)
(b) x(2) = u(t + 1) — 2u(t) + u(t — 1) 2T
() x(t) = —u(t + 3) + 2u(t + 1) — 2u(t — 1)
+ u(t — 3) g
(dy y(@) = r(t + 1) — 7(t) + r(t — 2) I ‘I
(e) y(t) = r(t + 2y —rt+ 1) — (e - 1) o0—0—0 1 ! o—0—0 n
F (it - 2) 3241 ] 123
1.17 Figure P1.17(a) shows a pulse x(¢) that may be @
viewed as the superposition of three rectangular
pulses. Starting with the rectangular pulse g(z) yln]
of Fig. P1.17(b), construct this waveform, and
express x(t) in terms of g{z). I
1.18 Let x[#] and y[#n] be given in Figs. P1.18(a) and 439 1
(b), respectively. Carefully sketch the following — 00—t 1 l—o—o0—0—=n
signals: 123 4
(a) x[2n] 1
(b) x[3n — 1]. -1 .
(c) {1 = =] ®
(d) y[2 — 2n] FiGure P1.18




Problems

1.19 Consider the sinusoidal signal

-w--—----~'-—-q

47 T
= —_— + —
x[n] = 10 cos(31 n 5>
Determine the fundamenta] period of x(n).
1.20 The sinusoidal signal x[n] has fundamentaj pe-
riod N = 10 samples. Determine the smallest
angular frequency Q) for which x[#] is periodic.

s
f
f 1.21 Determine whether the following signals are pe-
! " rodic. If they are periodic, find the fundamental
period.
/ (a) x[7] = cos(&mn)
{(b) x[n] = cos(%wn)
! (c) x(t) = cos(2t) + sin{3z)
(d) x(r) = 3z __(—1)%s(z - 24
| () *[n] = S __{8[n — 3k) + o[ — 42
(f) x(t) = cos(t)u(t)
(g) x(2) = v(z) + v(—t), where v(t) = Cos(t)u(t)
(h) x(2) = v(z) + v(~t), where v(t) = sin(z)u(t)
(1) x[n] = cos(tamn) sin(37n)
1.22 A complex sinusoidal signal x(z) has the follow-
ing components: ]
Re{x(2)}] = Xr(t) = A cos(wt + ®)
Im{x(t)} = x/(2) = A sin(wt + d)
The amplitude of x(t) is defined by the square
[ root of x3(¢) + x7(t). Show that this amplitude
! equals A, independent of the phase angle ¢.
| 1.23 Consider the complex-valued exponential signal

x(t) = Aeat+iwt, a > O

Evaluate the real and imaginary components of

x(t).
1.24 Consider the continuous-time signal
T + 0.5, -T2 < t=T/2
x(t) = 1, t=T/2

0, t< -T2

which is applied to 4 differentiator. Show that
the output of the differentiator approaches the
unit impulse &8(t)as T approaches zero.

In this problem, we explore what happens when
a unit impulse js applied to a differentiator.
Consider a triangular pulse x(t) of duration T
and amplitude 27, as depicted in Fig. P1.25,
The area under the pulse is unity. Hence as the
duration T approaches zero, the triangular pulse
approaches a unit impulse,
(a) Suppose the triangular pulse x(¢) is applied
to a differentiaror. Determine the output
¥(£) of the differentiator.

1.25

S
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(b) What happens to the differentiator output
¥(?) as T approaches zero? Use the definition
of a unit impulse 8(2) to express your
answer.

(¢) What is the total area under the differentia-
tor outpur y(¢) for all T» Justify your
answer,

Based on your findings in parts (a) to (¢}, de-

scribe in succinct terms the result of differenti.

ating a unit impulse.

x(t)

7"

-T2 o

FIGURE P1.25

1.26 The derivative of impulse function 8(2) is re-

ferred to as a doubler. 1t is denoted by o'(¢).
Show that &'(t) satisfies the sifting property

f_w 0'(t — ¢,) ft) de =-f'(ty)

where

d

flto) = P f(t)I

Assume that the function f(2) has a continuous
derivative at time 7 — to.

r=z,

1.27 A system consists of several subsystems con-

x(2)

nected as shown in Fig. P1.27. Find the operator
H relating x(z) to ¥(2) for the subsystem opera-
tors given by:

Hty(t) = x1(Hxy(t — 1)

Hyiy,(2) = EAGY

Hyiys0) =1 + 2x5(2)

Hi:ya(t) = cosey(t))

I

x(2)

x(2)
—_—

>
;_T
o l
H, - BB

5

o . ’
H, Ya(t)

x3(2) ya(t) X4(t)
—_—

FIGURE P1.27
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x1(5) 0]
1 i+
A_
t — t
1 1 2
x,(2) ya(8)
2 3
t T 4 T e |
1 1 2\3./4
-1 1+
x5() y3(t)
1 -+
t z f e £
1 2 3 1 2\3/1
O
(a)
xy(8)
1....
1
x5(t)
2 ¥2(0)
14 1
1 t ! 1 L t
1 2 3 4 1 2 3 4
X3(t) y:;(t)
1<
e £
I 2 3 4
X4(8)
zT 0]
1+ 1‘,_
t + ; t
1 2 3 ] 1 2 3 4

()

FIiGure P1.39
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1.28

1.29

1.30

1.31

1.32

1.33

Problems

The systems given below have input x(#) or x[n]
and output y(¢) or yin|, respectlvely Deter-
mine whether each of them is (i) memoryless,
(ii) stable, (iit) causal, (iv) linear, and (v) time
invariant.

(a) y(t) = cos(x(z))

(b) yln] = 2x[n]u[n]

(c) y[n] = logio ([ n]|)
(d) y(t) = /"2, x(7) dr

(e) yln] = Zi- . x[k + 2]

(6 30 = % x(1)

(g) yln] = cosRmx[n + 1]) + x[n]

(i) () ==x(2—1)

() yln) = x[n] Zi- ... o[n — 2k]

(k) ¥(z) = x(2/2)

() yln] = 2x[27]

The output of a discrete-time system is related
to its input x[#] as follows:

yln] = agxln] + ayxln — 1]
+ axx[n — 2] + asx[n — 3]

Let the operator S* denote a system that shifts
the input x[#] by k time units to produce
x[n — k]. Formulate the operator H for the
system relating y[n] to x[n]. Hence develop a
block diagram representation for H, using
(a) cascade implementation and (b) parallel
implementation.

Show that the system described in Problem 1.29
is BIBO stable for all ay, a1, a,, and a;.

How far does the memory of the discrete-time
system described in Problem 1.29 extend into
the past?

Is it possible for a noncausal system to possess
memory? Justify your answer.

The output signal y[#] of a discrete-time system
is related to its input signal x[#] as follows:

yln] = x[n] + x[n — 1] + x{n — 2]
Let the operator S denote a system that shifts its
input by one time unit.
(a) Formulate the operator H for the system re-
lating y[#] to x[n].
{b) The operator H™' denotes a discrete-time

system that is the inverse of this system.
How is H™! defined?

1.34

1.35

1.36

1.37

1.38

1.39

- 1.40

1.41

1.42
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Show that the discrete-time system described in
Problem 1.29 is time invariant, independent of
the coefficients ay, a;, @, and a;.

Is it possible for a time-variant system to be lin-
ear? Justify your answer.
Show that an Nth power-law device defined by
the input-output relation

y(t) = xN(t), N integer and N # 0, 1

is nonlinear.

A linear time-invariant system may be causal or
noncausal. Give an example for each one of
these two possibilities.

Figure 1.50 shows two equivalent system con-

figurations on condition that the system

operator H is linear. Which of these two config-

urations is simpler to implement? Justify your

answer.

A system H has its input-output pairs given.

Determine whether the system could be me-

moryless, causal, linear, and time invariant for

(a) signals depicted in Fig. P1.39(a) and (b) sig-

nals depicted in Fig. P1.39(b). For all cases, jus-

tify your answers.

A linear system H has the input-output pairs

depicted in Fig. P1.40(a). Determine the follow-

ing and explain your answers:

(a) Is this system causal?

(b) Is this system time invariant?

(c) Is this system memoryless?

{(d) Find the output for the input depicted in Fig.
P1.40(b).

A discrete-time system is both linear and time

invariant. Suppose the output due to an input

x[n] = 8[n] is given in Fig. P1.41(a).

(a) Find the output due to an input x[n] =
oln — 1].

(b) Find the output due to an input x[n] =
— 8[n — 2].

(c) Find the output due to the input depicted in
Fig. P1.41(b).

268[n]

» Computer Experiments

Write a set of MATLAB commands for approx-
imating the following continuous-time periodic
waveforms:

(a) Square wave of amplitude 5 volts, funda-
mental frequency 20 Hz, and duty cycle 0.6.
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FiGure P1.40

FiGURE P1.41

x(®

1

(a)

(b) Sawtooth wave of amplitude 5 volts, and
fundamental frequency 20 Hz.

Hence plot five cycles of each of these two
waveforms.

1.43 (a) The solution to a linear differential equation
is given by

x(t) = 10e™" — 5¢70-%¢

Using MATLAB, plot x(t) versus ¢ for t =
0:0.01:5.

{b) Repeat the problem for
x(t) = 10e™" + 57

1.44 An exponentially damped sinusoidal signal is
defined by

x(t) = 20 sin(27 X 1000t — 7/3) exp(—at)

where the exponential parameter g is variable;
it takes on the following set of values: a = 500,




Problems 69

750, 1000. Using MATLAB, investigate the ef- 1.46 A rectangular pulse x(t) is defined by
fect of varying a on the signal x(t) for ~2 < ¢ : ;
; < 2 milliseconds. x(t) = {10, 0=t=$§ _ i
1.45 A raised-cosine sequence is defined by 0, otherwise

win] = {cos(Z'n'Fn), —1/2F < n < 112F Generate x(#) using:
0, otherwise {a) A pair of time-shifted step functions.
Use MATLAB to plot w|[n] versus n for F = 0.1. {b) An M-file.




