Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

CS 61c: Great Ideas in Computer Architecture Floating Point Numbers, Measuring Performance

Instructor: Alan Christopher

July 8, 2014

Instructor: Alan Christopher CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

Review

- Compiler converts a single HLL file into a single assembly file
- Assembler removes pseudo-instructions, converts what it can into machine language, and creates a checklist for linker (relocation table)
 - Resolves addresses by making 2 passes (for forward references)
- Linker combines several object files and resolves absolute addresses
 - Enable separate compilation and use of libraries
- Loader loads executable into memory and begins execution

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

Review/MT Practice

Discuss with Neighbors:(previous midterm question) In one word each, name the most common producer and consumer of the following items. Choose from *Linker, Loader, Compiler, Assembler, Programmer*

(item)	This is the output of:	This is the input to:
bne \$t0, \$s0, done	Compiler	Assembler
char *s = "hello world"		
app.o string.o		
firefox		

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

Review/MT Practice

Discuss with Neighbors:(previous midterm question) In one word each, name the most common producer and consumer of the following items. Choose from *Linker, Loader, Compiler, Assembler, Programmer*

(item)	This is the output of:	This is the input to:
bne \$t0, \$s0, done	Compiler	Assembler
char *s = "hello world"	Programmer	Compiler
app.o string.o	Assembler	Linker
firefox	Linker	Loader

Floating Point	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

Outline

Floating Point Motivation Representation

Administrivia

Floating Point Cont. Special Cases

Performance Metrics

Latency vs. Throughput The Iron Law of Computing

Bonus Material

Casting Concerns

Floating Point ●0 ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

▶ Given one word (32 bits), what can we represent so far?

Floating Point ●0 ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- ▶ Given one word (32 bits), what can we represent so far?
 - Signed and unsigned integers

Floating Point ●0 ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- Given one word (32 bits), what can we represent so far?
 - Signed and unsigned integers
 - Characters (ASCII)

Motivation	Floating Point ●0 0000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
	Motivation				

- ▶ Given one word (32 bits), what can we represent so far?
 - Signed and unsigned integers
 - Characters (ASCII)
 - Instructions & Addresses

Floating Point ●0 ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- ▶ Given one word (32 bits), what can we represent so far?
 - Signed and unsigned integers
 - Characters (ASCII)
 - Instructions & Addresses
- How do we encode?
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 7.21×10^{-34})
 - ► "Special" numbers (e.g. ∞)

Floating Point ●0 ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- ▶ Given one word (32 bits), what can we represent so far?
 - Signed and unsigned integers
 - Characters (ASCII)
 - Instructions & Addresses
- How do we encode?
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 7.21×10^{-34})
 - ► "Special" numbers (e.g. ∞)
- Floating Point!

Floating Point 0● 0000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- Support a wide range of values
 - Both very small and very large

Floating Point O● ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- Support a wide range of values
 - Both very small and very large
- Keep as much precision as possible
 - Not equivalent to accuracy

Floating Point O● ○○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Motivation				

- Support a wide range of values
 - Both very small and very large
- Keep as much precision as possible
 - Not equivalent to accuracy
- Help programmer with errors in real arithmetic
 - Support ±∞, Not-a-Number (NaN), exponent overflow and underflow

Floating Point	Administrivia	Floating Point Cont. 0000000000	Performance Metrics	Bonus Material 000
Motivation				

- Support a wide range of values
 - Both very small and very large
- Keep as much precision as possible
 - Not equivalent to accuracy
- Help programmer with errors in real arithmetic
 - Support ±∞, Not-a-Number (NaN), exponent overflow and underflow
- Keep encoding that is somewhat compatible with integer representations
 - e.g. 0 in FP is the same as 0 in two's complement
 - Can use the same comparator operator for floats as for signed integers (sign and magnitude, not two's complement)

Floating Point ○○ ●○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Fractions in Base 2

- "Binary Point" like decimal point signifies boundary between integer and fractional parts:
- Example 6-bit representation:

Floating Point ○○ ●○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Fractions in Base 2

"Binary Point" like decimal point signifies boundary between integer and fractional parts:

Example 6-bit representation:

$$\begin{array}{c} \mathsf{XX} \cdot \mathsf{y} \mathsf{y} \mathsf{y} \mathsf{y} \\ \swarrow & \uparrow & \uparrow & \uparrow \\ 2^1 & 2^0 & 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} \end{array}$$

• Example: $10.1010_2 = 1 \times 2 + 1 \times \frac{1}{2} + 1 \times \frac{1}{8} = 2.625_{10}$

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point ○○ ●○○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Fractions in Base 2

- "Binary Point" like decimal point signifies boundary between integer and fractional parts:
- Example 6-bit representation:

$$\begin{array}{c} \mathsf{XX} \cdot \mathsf{yyyy} \\ \swarrow & \uparrow & \uparrow & \uparrow \\ 2^1 & 2^0 & 2^{-1} & 2^{-2} & 2^{-3} & 2^{-4} \end{array}$$

- Example: $10.1010_2 = 1 \times 2 + 1 \times \frac{1}{2} + 1 \times \frac{1}{8} = 2.625_{10}$
- This 6-bit binary point format can represent numbers between 0 (00.0000₂) and 3.9375 (11.1111₂)

Floating Point ○○ ○●○○○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Scientific Notation (Decimal)

- Normalized form: exactly one non-zero digit to the left of decimal point
- Multiple ways of representing 10⁻⁹ if we don't insist of normalizing, e.g.
 - Normalized: 1.0×10^{-9}
 - \blacktriangleright Not normalized: 10.0 \times 10^{-10}, 0.1 \times 10^{-8}

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point	Administrivia	Floating Point Cont.	Performance Metrics	Bonus Material
0000000			000 0000000	
Representation				

Scientific Notation (Binary)

 Computer arithmetic that supports this format is called floating point, due to the "floating" nature of the binary point

float and double types in C

Floating Point 00 0000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

 \blacktriangleright Consider the number $1.011_2 \times 2^4$

Floating Point ○○ ○○○●○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

- Consider the number $1.011_2 \times 2^4$
- To convert to ordinary number, shift the decimal to the right by 4
 - ▶ Result: 10110₂ = 22₁₀

Floating Point ○○ ○○○●○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

- Consider the number $1.011_2 \times 2^4$
- To convert to ordinary number, shift the decimal to the right by 4
 - Result: 10110₂ = 22₁₀
- For negative exponents, shift decimal to the left
 - ▶ $1.011_2 \times 2^{-2} \rightarrow 0.01011_2 = 0.34375_{10}$

Floating Point ○○ ○○○●○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

- Consider the number $1.011_2 \times 2^4$
- To convert to ordinary number, shift the decimal to the right by 4
 - Result: 10110₂ = 22₁₀
- ► For negative exponents, shift decimal to the left
 - ▶ $1.011_2 \times 2^{-2} \rightarrow 0.01011_2 = 0.34375_{10}$
- Go from ordinary number to scientific notation by shifting until normalized
 - ▶ $1101.001_2 \rightarrow 1.101001_2 \times 2^3$

Floating Point ○○ ○○○●○○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

- Consider the number $1.011_2 \times 2^4$
- To convert to ordinary number, shift the decimal to the right by 4
 - Result: 10110₂ = 22₁₀
- For negative exponents, shift decimal to the left
 - ▶ $1.011_2 \times 2^{-2} \rightarrow 0.01011_2 = 0.34375_{10}$
- Go from ordinary number to scientific notation by shifting until normalized
 - ▶ $1101.001_2 \rightarrow 1.101001_2 \times 2^3$
- Just like base 10 (if you're short a few fingers)

Floating Point ○○ ○○○○●○○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Floating Point Encoding I

Use normalized, base 2 scientific notation:

 $\pm 1.$ xxx...x₂ $\times 2^{yyy...y_2}$

Floating Point Administrivi	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation			

Floating Point Encoding I

Use normalized, base 2 scientific notation:

 $\pm 1.$ xxx...x₂ × 2^{yyy...y₂}

Split 32-bit word into 3 fields:

- S represents sign (1 if negative, 0 otherwise)
- Exponent field represents the base's exponent
- Mantissa field represents the scientific notation's mantissa except for the leading 1.

Floating Point ○○ ○○○○○●○○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of -127
 - Defines -127 through 128 as 0b00000000 through 0b11111111
 - ▶ Exponent 0 is represented as 0b01111111 = 127₁₀

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of -127
 - Defines -127 through 128 as 0b00000000 through 0b11111111
 - Exponent 0 is represented as 0b01111111 = 127₁₀
- To encode in biased notation, subtract the bias (add 127), then encode in unsigned:
 - $\blacktriangleright \ 1 \rightarrow 128 \rightarrow 0b1000000$
 - $\blacktriangleright 127 \rightarrow 254 \rightarrow 0b11111110$

Floating Point ○○ ○○○○○○●○	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Floating Point Encoding II

Note the implicit 1 in front of the significand

- Gives us some extra precision by avoid duplicate representations

Floating Point ○○ ○○○○○○○●	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Exponent Comparison

- Which is smaller (closer to $-\infty$)?
 - ▶ 0 or 10⁻¹²⁷
 - ▶ 10⁻¹²⁶ or 10⁻¹²⁷
 - ▶ -10^{-127} or 0
 - ▶ -10^{-126} or -10^{-127}

Floating Point ○○ ○○○○○○○●	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Representation				

Exponent Comparison

- Which is smaller (closer to $-\infty$)?
 - ▶ 0 or 10⁻¹²⁷
 - ▶ 10⁻¹²⁶ or 10⁻¹²⁷
 - ► -10⁻¹²⁷ or 0
 - -10^{-126} or -10^{-127}

► Notice: When positive, a smaller exponent takes us closer to -∞, but when negative, the opposite happens

- Just like with sign and magnitude
- Can use sign+magnitude comparisons to sort floating point numbers
- This is a big reason why we prefer bias to two's complement inside of floats

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

Outline

Floating Point Motivation Representation

Administrivia

Floating Point Cont. Special Cases

Performance Metrics

Latency vs. Throughput The Iron Law of Computing

Bonus Material

Casting Concerns

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000

Administrivia

- Reminder: You are in (almost) complete control of how you implement project 1.
 - If you don't like how the skeleton does something, feel free to throw it out
 - Don't ask questions about what something in the skeleton is "supposed" to do. It's supposed to do whatever you want it to.
 - Do, however, feel free to ask if a given approach is sane or not
- The rest of this week's lectures are particularly difficult for students (historically).
 - Get an extra shot of espresso in your morning coffee
 - Don't be afraid to ask questions, everyone else will be confused with you

Floating Point 00 00000000	Administrivia	Floating Point Cont.	Performance Metrics 000 0000000	Bonus Material 000

Outline

Floating Point Motivation Representation

Administrivia

Floating Point Cont. Special Cases

Performance Metrics

Latency vs. Throughput The Iron Law of Computing

Bonus Material

Casting Concerns

Floating Point 00 0000000	Administrivia	Floating Point Cont. •000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Representing Very Small Numbers

So, uhhh, what about zero?

Special Cases	Floating Point 00 00000000	Administrivia	Floating Point Cont. •000000000	Performance Metrics 000 0000000	Bonus Material 000
	Special Cases				

- So, uhhh, what about zero?
 - \blacktriangleright Using standard encoding 0x0 is $1.0\times2^{-127}\neq0$

Floating Point 00 00000000	Administrivia	Floating Point Cont. •000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- So, uhhh, what about zero?
 - Using standard encoding 0x0 is $1.0 \times 2^{-127} \neq 0$
 - \blacktriangleright Special Case: Exponent and mantissa all zero \Rightarrow 0

Floating Point 00 0000000	Administrivia	Floating Point Cont. •000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- So, uhhh, what about zero?
 - Using standard encoding 0x0 is $1.0 \times 2^{-127} \neq 0$
 - Special Case: Exponent and mantissa all zero $\Rightarrow 0$
 - ▶ Two zeros! But at least 0x0 == 0 like in integers

Floating Point 00 00000000	Administrivia	Floating Point Cont. •000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- So, uhhh, what about zero?
 - Using standard encoding 0x0 is $1.0 \times 2^{-127} \neq 0$
 - Special Case: Exponent and mantissa all zero $\Rightarrow 0$
 - ▶ Two zeros! But at least 0x0 == 0 like in integers
- Numbers closest to 0:

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont. ●0000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- So, uhhh, what about zero?
 - Using standard encoding 0x0 is $1.0 \times 2^{-127} \neq 0$
 - Special Case: Exponent and mantissa all zero $\Rightarrow 0$
 - ▶ Two zeros! But at least 0x0 == 0 like in integers
- Numbers closest to 0:

$$a = 1.0...0 \times 2^{-126} = 2^{-126}$$

b = 1.0...1 × 2^{-126} = 2^{-126} + 2^{-149}
Gaps!
-∞ + ||||||||
b = 1.0...1 × 2^{-126} = 2^{-126} + 2^{-149}

Normalization and implicit 1 are to blame

Floating Point 00 00000000	Administrivia	Floating Point Cont. •0000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- So, uhhh, what about zero?
 - Using standard encoding 0x0 is $1.0 \times 2^{-127} \neq 0$
 - Special Case: Exponent and mantissa all zero $\Rightarrow 0$
 - ▶ Two zeros! But at least 0x0 == 0 like in integers
- Numbers closest to 0:

$$a = 1.0...0 \times 2^{-126} = 2^{-126}$$

b = 1.0...1 × 2^{-126} = 2^{-126} + 2^{-149}
Gaps!
-∞ + |||||||
b = 1.0...1 × 2^{-126} = 2^{-126} + 2^{-149}

- Normalization and implicit 1 are to blame
- Special case: Exponent = $0 \Rightarrow$ denormalized number

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0●000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- Short for "denormalized numbers"
 - ► No leading 1
 - Implicit exponent is -126, NOT -127

Floating Point 00 0000000	Administrivia	Floating Point Cont. 0●000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- Short for "denormalized numbers"
 - No leading 1
 - Implicit exponent is -126, NOT -127
- Now what do the gaps look like?
 - Smallest norm: $1.0...0 \times 2^{-126} = 2^{-126}$
 - Largest denorm: $0.1...1 \times 2^{-126} = 2^{-126} 2^{-149}$
 - Smallest (pos) denorm: $1.0...1 \times 2^{-126} = 2^{-149}$

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0●000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

- Short for "denormalized numbers"
 - No leading 1
 - Implicit exponent is -126, NOT -127
- Now what do the gaps look like?
 - Smallest norm: $1.0...0 \times 2^{-126} = 2^{-126}$
 - Largest denorm: $0.1...1 \times 2^{-126} = 2^{-126} 2^{-149}$
 - ▶ Smallest (pos) denorm: 1.0...1×2⁻¹²⁶ = 2⁻¹⁴⁹
- Notice: gap between smallest norm and largest denorm is small
 - So is the gap between 0 and the smallest denorm

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00●00000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Other Special Cases

- $\blacktriangleright \pm \infty$
 - Exponent = 0xFF, Mantissa = 0x0
 - e.g. division by 0
 - can be used in comparisons

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00●00000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Other Special Cases

- $\blacktriangleright \pm \infty$
 - Exponent = 0xFF, Mantissa = 0x0
 - e.g. division by 0
 - can be used in comparisons
- NaN (Not a Number)
 - Exponent = $0 \times FF$, Mantissa $\neq 0$
 - e.g. square root of negative number
 - NaN "contaminates" computations
 - Value of Mantissa can (theoretically be useful for debugging)
 - In practice a NaN is usually just a NaN

Floating Point 00 0000000	Administrivia	Floating Point Cont. 00●00000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Other Special Cases

- $\blacktriangleright \pm \infty$
 - Exponent = 0xFF, Mantissa = 0x0
 - e.g. division by 0
 - can be used in comparisons
- NaN (Not a Number)
 - Exponent = $0 \times FF$, Mantissa $\neq 0$
 - e.g. square root of negative number
 - NaN "contaminates" computations
 - Value of Mantissa can (theoretically be useful for debugging)
 - In practice a NaN is usually just a NaN
- Largest finite value?
 - Exponent = 0xFF is taken, 0xFE now has largest:

$$1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}$$

Floating Point 00 00000000	Administrivia	Floating Point Cont.	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Float Encoding Summary

Exponent	Mantissa	Meaning
0	0	±0
0	non-zero	$\pm {\sf Denorm}$
1-254	anything	$\pm {\sf Normalized}$
255	0	$\pm\infty$
255	non-zero	NaN

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont.	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

On the Topic of Free Lunches

There is no such thing

- All design decisions have tradeoffs
- FP is no different
- Single precision IEEE floats only have 32 bits, same as a 32-bit signed int
 - Cannot represent more things
 - Can only change which things we decide to represent

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Floating Point Limitations I

- What if result x is too large? (abs(x) > 2¹²⁸)
 - Overflow: Exponent is larger than can be represented
 - saturate to $\pm\infty$

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Floating Point Limitations I

- What if result x is too large? (abs(x) > 2¹²⁸)
 - Overflow: Exponent is larger than can be represented
 - ▶ saturate to ±∞
- What if result x is too small? ($abs(x) < 2^{-149}$)
 - Underflow: Negative exponent is larger than can be represented
 - saturate to 0

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Floating Point Limitations I

- What if result x is too large? (abs(x) > 2¹²⁸)
 - Overflow: Exponent is larger than can be represented
 - ▶ saturate to ±∞
- What if result x is too small? ($abs(x) < 2^{-149}$)
 - Underflow: Negative exponent is larger than can be represented
 - saturate to 0

What if the result runs off the end of the mantissa?

- Rounding occurs and can lead to unexpected results
- FP has different *rounding modes*. Most common is round-to-nearest.

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point	Administrivia	Floating Point Cont.	Performance Metrics	Bonus Material
00 00000000		0000000000	000 0000000	
Special Cases				

Floating Point Limitations II

- Floating point arithmetic is NOT associative
 - You can find Big and Small numbers such that: Small + Big + Small ≠ Small + Small + Big
 - This is due to rounding errors: FP must *approximate* results because it only has 23 bits of mantissa
- Despite being seemingly "more accurate", FP cannot represent all integers
 - Must be careful when casting between int and float

Special Cases	Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
	Special Cases				

Double Precision

Encodes a floating point number in 64 bits

63	52	51 0
S	Exponent	Mantissa
1 bi	t 11 bits	52 bits

- Corresponds to the C type double
- Exponent bias of 1023
- Otherwise like single precision floats
- Much greater precision due to larger mantissa generally preferred to floats in real computations for that reason

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Question:

Let FP(1,2) = # of floats between 1 and 2 Let FP(2,3) = # of floats between 2 and 3

Which of the following statements is true?

```
(blue) FP(1,2) > FP(2,3)
(green) FP(1,2) = FP(2,3)
(purple) FP(1,2) < FP(2,3)
(yellow) It depends
```

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Question:

Let FP(1,2) = # of floats between 1 and 2 Let FP(2,3) = # of floats between 2 and 3

Which of the following statements is true?

```
(blue) FP(1,2) > FP(2,3)
(green) FP(1,2) = FP(2,3)
(purple) FP(1,2) < FP(2,3)
(yellow) It depends
```

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Question: Suppose we have the following floats in C:

$$Big = 2^{60}$$
, $Tiny = 2^{-15}$, $BigNeg = -2^{60}$,

What will the following conditionals evaluate to?

1. (Big	*	Tiny)	*	BigNeg	==	(Big	*	BigNeg)	*	Tiny
2. (Big	+	Tiny)	+	BigNeg	==	(Big	+	BigNeg)	+	Tiny
	1	2								
(blue)	F	F								
(green)	F	Т								
(purple)										
(yellow)										

Floating Point 00 00000000	Administrivia	Floating Point Cont. 00000000000	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Question: Suppose we have the following floats in C:

$$Big = 2^{60}$$
, $Tiny = 2^{-15}$, $BigNeg = -2^{60}$,

What will the following conditionals evaluate to?

(Big * Tiny) * BigNeg == (Big * BigNeg) * Tiny
 (Big + Tiny) + BigNeg == (Big + BigNeg) + Tiny

Floating Point 00 00000000	Administrivia	Floating Point Cont. 000000000●	Performance Metrics 000 0000000	Bonus Material 000
Special Cases				

Technology Break

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics	Bonus Material 000

Outline

Floating Point Motivation Representation

Administrivia

Floating Point Cont. Special Cases

Performance Metrics

Latency vs. Throughput The Iron Law of Computing

Bonus Material

Floating Point 00 0000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ●00 0000000	Bonus Material 000
Latency vs. Throughput	t			

Defining CPU Performance

- What does it mean to say that X is faster than Y?
- Ferrari vs. School bus

- 2009 Ferrari 599 GTB
 - 2 passengers, 11.1 second quarter mile
- 2009 Type D school bus
 - 54 passengers, abysmal quarter mile time? http://www.youtube.com/watch?v=KwyCoQuhUNA

Floating Point 00 0000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ●00 0000000	Bonus Material 000
Latency vs. Throughpu	it			

Defining CPU Performance

- What does it mean to say that X is faster than Y?
- Ferrari vs. School bus

- 2009 Ferrari 599 GTB
 - 2 passengers, 11.1 second quarter mile
- 2009 Type D school bus
 - 54 passengers, abysmal quarter mile time? http://www.youtube.com/watch?v=KwyCoQuhUNA

Depends on whether we care about throughput or latency

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○●○ ○○○○○○○	Bonus Material 000
Latency vs. Throughp	ut			

Measurements of Performance

There are two metrics which are generally considered when measuring performance

- Latency (also response time or execution time)
 - Time to complete one task
- Bandwidth (or throughput)
 - Tasks completed per unit time

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 00● 0000000	Bonus Material 000
Latana,				

Cloud Performance: Why Latency Matters

Server Delay (ms)	Increased time to next click (ms)	Queries/ user	Any clicks/ user	User satisfac- tion	Revenue/ User
50					
200	500		-0.3%	-0.4%	
500	1200		-1.0%	-0.9%	-1.2%
1000	1900	-0.7%	-1.9%	-1.6%	-2.8%
2000	3100	-1.8%	-4.4%	-3.8%	-4.3%

Figure 6.10 Negative impact of delays at Bing search server on user behavior [Brutlag and Schurman 2009].

- Key figure of merit: application responsiveness
 - The longer the delay, the fewer the user clicks, the lower the user happiness, and the lower the revenue per user

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ●○○○○○○	Bonus Material 000
The Iron Law of Com	puting			

Defining Relative Performance

- Compare performance of X vs. Y
 - Latency in this case

Floating Point	Administrivia	Floating Point Cont.	Performance Metrics	Bonus Material		
00 00000000			000 ●000000			
The Iron Law of Computing						

Defining Relative Performance

- Compare performance of X vs. Y
 - Latency in this case
- $\operatorname{Perf}_X = \frac{1}{\operatorname{Program Execution Time}_X}$

Floating Point	Administrivia	Floating Point Cont.	Performance Metrics	Bonus Material		
00 00000000			000 ●000000			
The Iron Law of Computing						

Defining Relative Performance

- Compare performance of X vs. Y
 - Latency in this case
- $\operatorname{Perf}_X = \frac{1}{\operatorname{Program Execution Time}_X}$
- $\operatorname{Perf}_X > \operatorname{Perf}_Y \Rightarrow \operatorname{Execution} \operatorname{Time}_X < \operatorname{Execution} \operatorname{Time}_Y$
- "Computer X is N times faster than Y"

 $\frac{\text{Performance}_X}{\text{Performance}_Y} = \frac{\text{Execution Time}_Y}{\text{Execution Time}_X} = N$

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ○●○○○○○	Bonus Material 000
The Iron Law of Corr	nputing			

Measuring CPU Performance

- Computers use a clock to determine when events take place within hardware
- Clock cycles: discrete quanta of computer execution
 - a.k.a. clocks, cycles, clock periods, clock ticks
- Clock rate or clock frequency: clock cycles per second
- Example: 3 GHz clock rate means a clock cycle time of 1/(3 · 10⁹) seconds = 333 picoseconds

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ○○●○○○○	Bonus Material 000
The Iron Law of Com	puting			

CPU Performance Factors

- Distinguish between time spent by the processor, and time waiting for I/O
 - CPU time is the time spent in the processor

$$\frac{\text{CPU Time}}{\text{Program}} = \frac{\text{Clock Cycles}}{\text{Program}} \times \text{Clock Cycle Time}$$
$$= \frac{\text{Clock Cycles}}{\text{Program}} \times \frac{1}{\text{Clock Rate}}$$

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ○○○●○○○	Bonus Material 000
The Iron Law of Com	nputing			

CPU Performance Factors

But programs execute instruction!

Accounting for that we have

Floating Point	Administrivia	Floating Point Cont.	Performance Metrics	Bonus Material
00 00000000			000 0000●00	
The Iron Law of Co	monting			

Components that Affect Performance

Component (HW/SW)	Factors Affected	
Algorithm	Instruction Count, (CPI)	
Programming	Instruction Count, CPI	
Language		
Compiler	Instruction Count, CPI	
Instruction Set	Instruction Count, CPI,	
Architecture	Clock Rate	

Floating Point 00 0000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ○○○○○●○	Bonus Material 000
The Iron Law of Com	puting			

Question: Which statement is TRUE, given the following?

- Computer A clock cycle time 250ps, CPI = 2
- ► Computer B clock cycle time 500ps, CPI = 1.2
- Assume A and B have the same ISA

(blue) Computer A is ≈ 1.2 times faster than B (green) Computer A is ≈ 4.0 times faster than B (purple) Computer B is ≈ 1.7 times faster than A (yellow) Computer B is ≈ 3.4 times faster than A

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ○○○○○●○	Bonus Material 000
The Iron Law of Corr	puting			

Question: Which statement is TRUE, given the following?

- Computer A clock cycle time 250ps, CPI = 2
- Computer B clock cycle time 500ps, CPI = 1.2
- Assume A and B have the same ISA

CPU Time = Instructions \times CPI \times Clock Period

(blue) Computer A is ≈ 1.2 times faster than B (green) Computer A is ≈ 4.0 times faster than B (purple) Computer B is ≈ 1.7 times faster than A (yellow) Computer B is ≈ 3.4 times faster than A

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics ○○○ ○○○○○○●	Bonus Material 000
The Iron Law of Comp	outing			

And In Conclusion

Floating point approximates real numbers

31	23	22 0
S	Exponent	Mantissa
1 bi	t 8 bits	23 bits

- Very high precision when representing small numbers
- Very large range when representing large numbers
- Encodings for 0, $\pm\infty$, NaN as well
- Performance measured in *latency* or *bandwidth*
- Latency measurement:
 - CPU Time = Instructions \times CPI \times Clock Period
 - Affected by different components of the computer

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material

Outline

Floating Point Motivation Representatio

Administrivia

Floating Point Cont. Special Cases

Performance Metrics Latency vs. Throughput The Iron Law of Computir

Bonus Material Casting Concerns

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material

Bonus Slides

We will likely not have time to cover these slides in lecture, but you are still responsible for the material presented within them. They have been put together in such a way as to be easily readable even without a live lecturer presenting them.

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material ●00
Casting Concerns				

Casting floats to ints and vice versa

```
(int) floating_point_expression
```

```
Coerces and coverts it to the nearest integer, rounded toward zero (i.e. it truncates)
```

i = (int) (3.14159 * f);

```
(float) integer_expression
```

```
Converts integer to nearest floating point
f = f + (float) i;
```

Instructor: Alan Christopher

CS 61c: Great Ideas in Computer Architecture

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 0●0
Casting Concerns				

 $\texttt{float} \rightarrow \texttt{int} \rightarrow \texttt{float}$

```
if (i == (float)((int) i)) {
    printf("true");
}
```

- Will not always print "true"
 - Small floating point numbers (< 1) don't have integer representations
- For other numbers, often will be rounding errors

Casting Concerns	Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 00●
	Casting Concerns				

$\texttt{int} \to \texttt{float} \to \texttt{int}$

```
if (f == (int)((float) f)) {
    printf("true");
}
```

- Will not always print "true"
 - Many large valued integers don't have exact floating point representations (recall: free lunches, and the ain't thereof)
- What about double?

Floating Point 00 00000000	Administrivia	Floating Point Cont. 0000000000	Performance Metrics 000 0000000	Bonus Material 00●
Casting Concerns				

$ext{int} o ext{float} o ext{int}$

```
if (f == (int)((float) f)) {
    printf("true");
}
```

- Will not always print "true"
 - Many large valued integers don't have exact floating point representations (recall: free lunches, and the ain't thereof)
- What about double?
 - Significand is now 52 bits, which can hold all of a 32-bit integer, so will always print "true" (assuming 32 bit ints)