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Review

I Compiler converts a single HLL file into a single assembly file
I Assembler removes pseudo-instructions, converts what it can

into machine language, and creates a checklist for linker
(relocation table)

I Resolves addresses by making 2 passes (for forward references)
I Linker combines several object files and resolves absolute

addresses
I Enable separate compilation and use of libraries

I Loader loads executable into memory and begins execution

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Review/MT Practice

Discuss with Neighbors:(previous midterm question)
In one word each, name the most common producer and consumer
of the following items. Choose from Linker, Loader, Compiler,
Assembler, Programmer

(item) This is the output of: This is the input to:
bne $t0, $s0, done Compiler Assembler
char *s = "hello world"
app.o string.o
firefox

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Assembler, Programmer
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Motivation

Number Rep Revisited

I Given one word (32 bits), what can we represent so far?

I Signed and unsigned integers
I Characters (ASCII)
I Instructions & Addresses

I How do we encode?
I Real numbers (e.g. 3.14159)
I Very large numbers (e.g. 6.02× 1023)
I Very small numbers (e.g. 7.21× 10−34)
I “Special” numbers (e.g. ∞)

I Floating Point!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Motivation

Goals of Floating Point

I Support a wide range of values
I Both very small and very large

I Keep as much precision as possible
I Not equivalent to accuracy

I Help programmer with errors in real arithmetic
I Support ±∞, Not-a-Number (NaN), exponent overflow and

underflow
I Keep encoding that is somewhat compatible with integer

representations
I e.g. 0 in FP is the same as 0 in two’s complement
I Can use the same comparator operator for floats as for signed

integers (sign and magnitude, not two’s complement)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Fractions in Base 2

I “Binary Point” like decimal point signifies boundary
between integer and fractional parts:

I Example 6-bit representation:

xx.yyyy
21 20 2−1 2−2 2−3 2−4

I Example: 10.10102 = 1× 2 + 1× 1
2 + 1× 1

8 = 2.62510
I This 6-bit binary point format can represent numbers between

0 (00.00002) and 3.9375 (11.11112)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Scientific Notation (Decimal)

6.0210 × 1023

decimal point

mantissa exponent

radix

I Normalized form: exactly one non-zero digit to the left of
decimal point

I Multiple ways of representing 10−9 if we don’t insist of
normalizing, e.g.

I Normalized: 1.0× 10−9

I Not normalized: 10.0× 10−10, 0.1× 10−8

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Scientific Notation (Binary)

1.012 × 2−1

binary point

mantissa exponent

radix

I Computer arithmetic that supports this format is called
floating point, due to the “floating” nature of the binary point

I float and double types in C

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Translating to and from Scientific Notation

I Consider the number 1.0112 × 24

I To convert to ordinary number, shift the decimal to the right
by 4

I Result: 101102 = 2210

I For negative exponents, shift decimal to the left
I 1.0112 × 2−2 → 0.010112 = 0.3437510

I Go from ordinary number to scientific notation by shifting
until normalized

I 1101.0012 → 1.1010012 × 23

I Just like base 10 (if you’re short a few fingers)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Floating Point Encoding I

I Use normalized, base 2 scientific notation:
±1.xxx...x2 × 2yyy...y2

I Split 32-bit word into 3 fields:

S Exponent Mantissa
031 2223

1 bit 8 bits 23 bits

I S represents sign (1 if negative, 0 otherwise)
I Exponent field represents the base’s exponent
I Mantissa field represents the scientific notation’s mantissa

except for the leading 1.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

The Exponent Field

I Use biased notation
I Read exponent as unsigned, but with bias of -127
I Defines -127 through 128 as 0b00000000 through 0b11111111
I Exponent 0 is represented as 0b01111111 = 12710

I To encode in biased notation, subtract the bias (add 127),
then encode in unsigned:

I 1→ 128→ 0b10000000
I 127→ 254→ 0b11111110

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Floating Point Encoding II

S Exponent Mantissa
031 2223

1 bit 8 bits 23 bits
(-1)S × (1.Mantissa) × 2(Exponent - 127)

I Note the implicit 1 in front of the significand
I Ex: 0b0 01111111 10000000000000000000000000 is read as

1.12 = 1.5, NOT 0.12 = 1.5
I Gives us some extra precision by avoid duplicate

representations

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Representation

Exponent Comparison

I Which is smaller (closer to −∞)?
I 0 or 10−127

I 10−126 or 10−127

I −10−127 or 0
I −10−126 or −10−127

I Notice: When positive, a smaller exponent takes us closer to
−∞, but when negative, the opposite happens

I Just like with sign and magnitude
I Can use sign+magnitude comparisons to sort floating point

numbers
I This is a big reason why we prefer bias to two’s complement

inside of floats

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Administrivia

I Reminder: You are in (almost) complete control of how you
implement project 1.

I If you don’t like how the skeleton does something, feel free to
throw it out

I Don’t ask questions about what something in the skeleton is
“supposed” to do. It’s supposed to do whatever you want it to.

I Do, however, feel free to ask if a given approach is sane or not
I The rest of this week’s lectures are particularly difficult for

students (historically).
I Get an extra shot of espresso in your morning coffee
I Don’t be afraid to ask questions, everyone else will be confused

with you

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Representing Very Small Numbers
I So, uhhh, what about zero?

I Using standard encoding 0x0 is 1.0× 2−127 6= 0
I Special Case: Exponent and mantissa all zero ⇒ 0
I Two zeros! But at least 0x0 == 0 like in integers

I Numbers closest to 0:
I a = 1.0...0×2-126 = 2−126

I b = 1.0...1×2-126 = 2−126 + 2−149

I Normalization and implicit 1 are to blame
I Special case: Exponent = 0 ⇒ denormalized number

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Denorms

I Short for “denormalized numbers”
I No leading 1
I Implicit exponent is -126, NOT -127

I Now what do the gaps look like?
I Smallest norm: 1.0...0×2-126 = 2−126

I Largest denorm: 0.1...1×2-126 = 2−126 − 2−149

I Smallest (pos) denorm: 1.0...1×2-126 = 2−149

I Notice: gap between smallest norm and largest denorm is
small

I So is the gap between 0 and the smallest denorm

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Other Special Cases
I ±∞

I Exponent = 0xFF, Mantissa = 0x0
I e.g. division by 0
I can be used in comparisons

I NaN (Not a Number)
I Exponent = 0xFF, Mantissa 6= 0
I e.g. square root of negative number
I NaN “contaminates” computations
I Value of Mantissa can (theoretically be useful for debugging)

I In practice a NaN is usually just a NaN
I Largest finite value?

I Exponent = 0xFF is taken, 0xFE now has largest:
1.1...12×2127 = 2128 − 2104

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Float Encoding Summary

Exponent Mantissa Meaning
0 0 ±0
0 non-zero ±Denorm
1-254 anything ±Normalized
255 0 ±∞
255 non-zero NaN

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

On the Topic of Free Lunches

I There is no such thing
I All design decisions have tradeoffs
I FP is no different

I Single precision IEEE floats only have 32 bits, same as a
32-bit signed int

I Cannot represent more things
I Can only change which things we decide to represent

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Floating Point Limitations I
I What if result x is too large? (abs(x)> 2128)

I Overflow: Exponent is larger than can be represented
I saturate to ±∞

I What if result x is too small? (abs(x)< 2−149)
I Underflow: Negative exponent is larger than can be

represented
I saturate to 0

I What if the result runs off the end of the mantissa?
I Rounding occurs and can lead to unexpected results
I FP has different rounding modes. Most common is

round-to-nearest.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Floating Point Limitations II

I Floating point arithmetic is NOT associative
I You can find Big and Small numbers such that:

Small + Big + Small 6= Small + Small + Big
I This is due to rounding errors: FP must approximate results

because it only has 23 bits of mantissa
I Despite being seemingly “more accurate”, FP cannot

represent all integers
I Must be careful when casting between int and float

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Double Precision

I Encodes a floating point number in 64 bits

S Exponent Mantissa
063 5152

1 bit 11 bits 52 bits

I Corresponds to the C type double
I Exponent bias of 1023
I Otherwise like single precision floats
I Much greater precision due to larger mantissa – generally

preferred to floats in real computations for that reason

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Question:
Let FP(1,2) = # of floats between 1 and 2
Let FP(2,3) = # of floats between 2 and 3

Which of the following statements is true?

(blue) FP(1,2) > FP(2,3)
(green) FP(1,2) = FP(2,3)
(purple) FP(1,2) < FP(2,3)
(yellow) It depends

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Question: Suppose we have the following floats in C:

Big = 260, Tiny = 2-15, BigNeg = -260,

What will the following conditionals evaluate to?
1. (Big * Tiny) * BigNeg == (Big * BigNeg) * Tiny

2. (Big + Tiny) + BigNeg == (Big + BigNeg) + Tiny
1 2

(blue) F F
(green) F T
(purple) T F
(yellow) T T

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Special Cases

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Outline
Floating Point

Motivation
Representation

Administrivia

Floating Point Cont.
Special Cases

Performance Metrics
Latency vs. Throughput
The Iron Law of Computing

Bonus Material
Casting Concerns

Instructor: Alan Christopher
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Latency vs. Throughput

Defining CPU Performance

I What does it mean to say that X is faster than Y?
I Ferrari vs. School bus

I 2009 Ferrari 599 GTB
I 2 passengers, 11.1 second quarter mile

I 2009 Type D school bus
I 54 passengers, abysmal quarter mile time?

http://www.youtube.com/watch?v=KwyCoQuhUNA

I Depends on whether we care about throughput or latency

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Latency vs. Throughput

Measurements of Performance

There are two metrics which are generally considered when
measuring performance

I Latency (also response time or execution time)
I Time to complete one task

I Bandwidth (or throughput)
I Tasks completed per unit time

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Latency vs. Throughput

Cloud Performance: Why Latency Matters

I Key figure of merit: application responsiveness
I The longer the delay, the fewer the user clicks, the lower the

user happiness, and the lower the revenue per user

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

Defining Relative Performance

I Compare performance of X vs. Y
I Latency in this case

I PerfX = 1
Program Execution TimeX

I PerfX > PerfY ⇒ Execution TimeX < Execution TimeY
I “Computer X is N times faster than Y”

PerformanceX
PerformanceY

=
Execution TimeY
Execution TimeX

= N

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

Measuring CPU Performance

I Computers use a clock to determine when events take place
within hardware

I Clock cycles: discrete quanta of computer execution
I a.k.a. clocks, cycles, clock periods, clock ticks

I Clock rate or clock frequency: clock cycles per second
I Example: 3 GHz clock rate means a clock cycle time of

1/(3 · 109) seconds = 333 picoseconds

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

CPU Performance Factors

I Distinguish between time spent by the processor, and time
waiting for I/O

I CPU time is the time spent in the processor

CPU Time
Program =

Clock Cycles
Program × Clock Cycle Time

=
Clock Cycles

Program × 1
Clock Rate

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

CPU Performance Factors

I But programs execute instruction!
I Accounting for that we have

CPU Time
Program =

Clock Cycles
Program × Clock Cycle Time

=
Instructions

Program × Clock Cycles
Instruction ×

1
Clock Rate

I Generally call Clock Cycles
Instruction the CPI (Cycles Per Instruction) of a

program

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

Components that Affect Performance

Component
(HW/SW)

Factors Affected

Algorithm Instruction Count, (CPI)
Programming
Language

Instruction Count, CPI

Compiler Instruction Count, CPI
Instruction Set
Architecture

Instruction Count, CPI,
Clock Rate

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

Question: Which statement is TRUE, given the following?
I Computer A clock cycle time 250ps, CPI = 2
I Computer B clock cycle time 500ps, CPI = 1.2
I Assume A and B have the same ISA

CPU Time = Instructions× CPI× Clock Period

(blue) Computer A is ≈1.2 times faster than B
(green) Computer A is ≈4.0 times faster than B
(purple) Computer B is ≈1.7 times faster than A
(yellow) Computer B is ≈3.4 times faster than A

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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The Iron Law of Computing

And In Conclusion
I Floating point approximates real numbers

S Exponent Mantissa
031 2223

1 bit 8 bits 23 bits

I Very high precision when representing small numbers
I Very large range when representing large numbers
I Encodings for 0, ±∞, NaN as well

I Performance measured in latency or bandwidth
I Latency measurement:

I CPU Time = Instructions× CPI× Clock Period
I Affected by different components of the computer

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Bonus Slides

We will likely not have time to cover these slides in lecture, but
you are still responsible for the material presented within them.
They have been put together in such a way as to be easily readable
even without a live lecturer presenting them.

Instructor: Alan Christopher
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Casting Concerns

Casting floats to ints and vice versa

(int) floating_point_expression
Coerces and coverts it to the nearest integer, rounded toward
zero (i.e. it truncates)
i = (int) (3.14159 * f);

(float) integer_expression
Converts integer to nearest floating point
f = f + (float) i;

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Casting Concerns

float → int → float

if (i == (float )(( int) i)) {
printf ("true");

}

I Will not always print “true”
I Small floating point numbers (< 1) don’t have integer

representations
I For other numbers, often will be rounding errors

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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Casting Concerns

int → float → int

if (f == (int )(( float) f)) {
printf ("true");

}

I Will not always print “true”
I Many large valued integers don’t have exact floating point

representations (recall: free lunches, and the ain’t thereof)
I What about double?

I Significand is now 52 bits, which can hold all of a 32-bit
integer, so will always print “true” (assuming 32 bit ints)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture
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