
C.A.L.L. Administrivia C.A.L.L. Summary

CS 61c: Great Ideas in Computer Architecture
C.A.L.L.

Instructor: Alan Christopher

July 7, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Review

I Three different instruction formats designed to be as similar
as possible, while still handling all instructions:

opcode rs rt rd shamt funct

opcode rs rt immediate

opcode jump address

R:

I:

J:

I Branches move relative to the PC, jumps go to a specific
address

I Assembly/Disassembly: Use MIPS Green Sheet to convert

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Question: Which of the following statements is TRUE

(blue) $rt is misnamed because it never receives the result of an
instruction
(green) All of the fields in all instructions are treated as unsigned
numbers
(purple) We can reach an instruction that is 218 bytes away with a
branch
(yellow) We can reach more instructions forward than we can
backwards with a branch

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Question: Which of the following statements is TRUE

(blue) $rt is misnamed because it never receives the result of an
instruction
(green) All of the fields in all instructions are treated as unsigned
numbers
(purple) We can reach an instruction that is 218 bytes away with a
branch
(yellow) We can reach more instructions forward than we can

backwards with a branch

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Compiler

Assembler

Machine Interpretation

Architecture Implementation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Outline

C.A.L.L.
Compilation

Administrivia

C.A.L.L.
Assembly
Linking
Loading
An Example

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Translation vs. Interpretation I

I How do we run a program written in a source language?

I Interpreter: Directly execute a program in the source language
I Translator: Converts a program from the source language to

an equivalent program in another language
I In general, we interpret a high level language when efficiency

is not critical and translate a high level language when
performance is critical

I Can also use lower-level language to begin with

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Translation vs. Interpretation I

I How do we run a program written in a source language?
I Interpreter: Directly execute a program in the source language

I Translator: Converts a program from the source language to
an equivalent program in another language

I In general, we interpret a high level language when efficiency
is not critical and translate a high level language when
performance is critical

I Can also use lower-level language to begin with

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Translation vs. Interpretation I

I How do we run a program written in a source language?
I Interpreter: Directly execute a program in the source language
I Translator: Converts a program from the source language to

an equivalent program in another language
I In general, we interpret a high level language when efficiency

is not critical and translate a high level language when
performance is critical

I Can also use lower-level language to begin with

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Translation vs. Interpretation II

I Generally easier to write an interpreter
I Interpreter closer to high-level, so can give better error

messages more easily
I Interpereter is slower (≈10x), but code is smaller (≈2x)
I Interpreter provides instruction set independence: can run on

any machine
I Still need an interpreter for the machine, of course

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Translation vs. Interpretation III

I Translated/compiled code almost always more efficient/higher
performance

I Important for many applications, particularly OSs and real
time systems

I Translation/compilation help to “hide” the source code form
users

I Can be used to protect intellectual property (e.g. many users
run Microsoft OSs, but the source code is carefully controlled)

I Alternative model, free software (sometimes called open
source), publishes source code in order to foster a community
of developers, among other things

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

C Translation

Steps to starting
a program:

1. Compilation
2. Assembly
3. Linking
4. Loading

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

C Translation

I Recall: A key feature of C is that it allows you to compile
files separately, later combining them into a single executable

I Helps with code factoring
I Reduces compilation times

I What can be accessed across files?
I Functions
I Static/global variables

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Compiler

I Input: Higher level language (HLL) code
I e.g. C or java files
I e.g. foo.c or foo.h

I Output: Assembly Language code (e.g. foo.s for MIPS)

I Output may contain pseudo-instructions
I We’ll deal with those inside the assembler

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Compilers are Non-Trivial

I There’s a whole (fantastic) course about them – CS164
I Project 1 is really just a taste of the topic

I Some examples of the task’s complexity:
I Operator precedence: 2 + 3 * 4
I Operator associativity: a = b = c;
I Static analysis of program validity:

I if(a){if(b){.../*Lots of junk */...}}}//extra bracket

I struct companion *cube;
... /* Lots of junk */ ...
x = cube ->cake; // companion cube has no cake

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Compiler Optimization
I Almost all compilers are what’s called an optimizing compiler

– it tries to produce correct code that’s fast too
I gcc provides different options for level of optimization

I Level of optimization specified by the ’O#’ flags (e.g. -O1)
I The default is equivalent to -O0 (almost no optimization) and

goes up to -O3 (throw every optimization in the book at the
problem, whether it makes sense or not)

I Trade-off is between compilation speed and output file
size/performance

I Infrequently (very infrequently) optimizations will result in
bugs that don’t occur in non-optimized code

I For more details on gcc optimization options, see: http://
gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Benefits of Compiler Optimization

I Example
program here:
BubbleSort.c

define ARRAY_SIZE 20000
int main () {

int iarray [ARRAY_SIZE], x, y, holder ;
for(x = 0; x < ARRAY_SIZE ; x++)

for(y = 0; y < ARRAY_SIZE -1; y++)
if(iarray [y] > iarray [y+1]) {

holder = iarray [y+1];
iarray [y+1] = iarray [y];
iarray [y] = holder ;

}
}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

Unoptimized MIPS Code

$L3:
lw $2 ,80016($sp)
slt $3 ,$2 ,20000
bne $3 ,$0 ,$L6
j
$L4

$L6:
.set noreorder
nop
.set reorder
sw $0 ,80020($sp)

$L7:
lw $2 ,80020($sp)
slt $3 ,$2 ,19999
bne $3 ,$0 ,$L10
j
$L5

$L10:
lw $2 ,80020($sp)
move $3 ,$2
sll $2 ,$3 ,2

addu $3 ,$sp ,16
addu $2 ,$3 ,$2
lw $4 ,80020($sp)
addu $3 ,$4 ,1
move $4 ,$3
sll $3 ,$4 ,2
addu $4 ,$sp ,16
addu $3 ,$4 ,$3
lw $2 ,0($2)
lw $3 ,0($3)
slt $2 ,$3 ,$2
beq $2 ,$0 ,$L9
lw $3 ,80020($sp)
addu $2 ,$3 ,1
move $3 ,$2
sll $2 ,$3 ,2
addu $3 ,$sp ,16
addu $2 ,$3 ,$2
lw $3 ,0($2)
sw $3 ,80024($sp)
lw $3 ,80020($sp)

addu $2 ,$3 ,1
move $3 ,$2
sll $2 ,$3 ,2
addu $3 ,$sp ,16
addu $2 ,$3 ,$2
lw $3 ,80020($sp)
move $4 ,$3
sll $3 ,$4 ,2
addu $4 ,$sp ,16
addu $3 ,$4 ,$3
lw $4 ,0($3)
sw $4 ,0($2)
lw $2 ,80020($sp)
move $3 ,$2
sll $2 ,$3 ,2
addu $3 ,$sp ,16
addu $2 ,$3 ,$2
lw $3 ,80024($sp)
sw $3 ,0($2)

$L11:
$L9:

lw $2 ,80020($sp)
addu $3 ,$2 ,1
sw $3 ,80020($sp)
j $L7

$L8:
$L5:

lw $2 ,80016($sp)
addu $3 ,$2 ,1
sw $3 ,80016($sp)
j $L3

$L4:
$L2:

li $12 ,65536
ori $12 ,$12 ,0 x38b0
addu $13 ,$12 ,$sp
addu $sp ,$sp ,$12
j $31

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Compilation

-O2 Optimized MIPS Code

li $13 ,65536
ori $13 ,$13 ,0 x3890
addu $13 ,$13 ,$sp
sw $28 ,0($13)
move $4 ,$0
addu $8 ,$sp ,16

$L6:
move $3 ,$0
addu $9 ,$4 ,1
. p2align 3

$L10:
sll $2 ,$3 ,2
addu $6 ,$8 ,$2
addu $7 ,$3 ,1
sll $2 ,$7 ,2
addu $5 ,$8 ,$2
lw $3 ,0($6)
lw $4 ,0($5)

slt $2 ,$4 ,$3
beq $2 ,$0 ,$L9
sw $3 ,0($5)
sw $4 ,0($6)

$L9:
move $3 ,$7
slt $2 ,$3 ,19999
bne $2 ,$0 ,$L10
move $4 ,$9
slt $2 ,$4 ,20000
bne $2 ,$0 ,$L6
li $12 ,65536
ori $12 ,$12 ,0 x38a0
addu $13 ,$12 ,$sp
addu $sp ,$sp ,$12
j $31

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Outline

C.A.L.L.
Compilation

Administrivia

C.A.L.L.
Assembly
Linking
Loading
An Example

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Administrivia

I We’re into the 3rd week (25% done)
I Pretty much done talking about programming for

programming’s sake
I Midterm in only 2 weeks

I Project 1 due Sunday
I Should have lexer, parser mostly finished
I Don’t forget to write tests
I Expect to spend half or more of your time debugging (as with

most any CS project)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Outline

C.A.L.L.
Compilation

Administrivia

C.A.L.L.
Assembly
Linking
Loading
An Example

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

The Assembler

I Input: Assembly language code (MAL)
I Output: Object code (TAL), information tables

I Called an object file (e.g. foo.o)
I Reads and uses directives
I Translates pseudo-instructions
I Produces machine language

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Assembler Directives1

I Give directions ot the assembler, but do not produce machine
instructions

I .text: Subsequent items put in user text segment (machine
code)

I .data: Subsequent items put in user data segment (binary rep
of data in source file)

I .globl sym: Declares sym global and can be referenced from
other files

I .asciiz str: Store the string str in memory and
null-terminates it

I .word w1 . . . wn: Store the n 32-bit quantities in successive
memory words

1More info available in P&H appendices
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Pseudo-instruction Replacement

Pseudo:

subu $sp , $sp , 32
sd $a0 , 32($sp)

mul $t7 , $t6 , $t5

addu $t0 , $t6 ,1
ble $t0 , 100, loop

la $a0 , str

Real:

addiu $sp ,$sp ,-32
sw $a0 , 32($sp)
sw $a1 , 36($sp)
mult $t6 ,$t5
mflo $t7
addiu $t0 ,$t6 ,1
slti $at ,$t0 ,101
bne $at ,$0 ,loop
lui $at ,%hi(str)
ori $a0 ,$at ,%lo(str)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Languge I

I Simple cases
I Arithmetic and logical instructions, shifts, etc.
I All necessary info is contained in the instruction

I What about Branches?

I Branches require a relative address
I Once pseudo-instructions replaced by real ones, we know by

how many instructions to branch, so no problem

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Languge I

I Simple cases
I Arithmetic and logical instructions, shifts, etc.
I All necessary info is contained in the instruction

I What about Branches?
I Branches require a relative address

I Once pseudo-instructions replaced by real ones, we know by
how many instructions to branch, so no problem

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Languge I

I Simple cases
I Arithmetic and logical instructions, shifts, etc.
I All necessary info is contained in the instruction

I What about Branches?
I Branches require a relative address
I Once pseudo-instructions replaced by real ones, we know by

how many instructions to branch, so no problem

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Language II
I “Forward Reference” problem

I Branch instructions can refer to labels that are “forward” in
the program:

or $v0 , $0 , $0
L1: slt $t0 , $0 , $a1

beq $t0 , $0 , L2
addi $a1 , $a1 , -1
j L1

L2: add $t1 , $a0 , $a1

I Solution: Make two passes over the program
I First pass remembers position of labels
I Second pass uses label positions to generate code

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Language II
I “Forward Reference” problem

I Branch instructions can refer to labels that are “forward” in
the program:

or $v0 , $0 , $0
L1: slt $t0 , $0 , $a1

beq $t0 , $0 , L2
addi $a1 , $a1 , -1
j L1

L2: add $t1 , $a0 , $a1

I Solution: Make two passes over the program
I First pass remembers position of labels
I Second pass uses label positions to generate code

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Language III

I What about jumps (j and jal)?
I Jumps require absolute address of instructions
I Forward or not, can’t generate machine instruction without

know the position of instructions in memory
I What about references to data?

I la gets broken up into lui and ori
I These will require the full 32-bit address of the data

I These can’t be determined yet, so we create two tables

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Producing Machine Language III

I What about jumps (j and jal)?
I Jumps require absolute address of instructions
I Forward or not, can’t generate machine instruction without

know the position of instructions in memory
I What about references to data?

I la gets broken up into lui and ori
I These will require the full 32-bit address of the data

I These can’t be determined yet, so we create two tables

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Symbol Table

I List of “items” that may be used by other files
I Every file has its own symbol table

I What are these “items”?

I Labels: for calling functions
I Data: anything in the .data section; variables may be

accessed across files

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Symbol Table

I List of “items” that may be used by other files
I Every file has its own symbol table

I What are these “items”?
I Labels: for calling functions

I Data: anything in the .data section; variables may be
accessed across files

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Symbol Table

I List of “items” that may be used by other files
I Every file has its own symbol table

I What are these “items”?
I Labels: for calling functions
I Data: anything in the .data section; variables may be

accessed across files

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Relocation Table

I List of “items” this file will need the address of later
(currently undetermined)

I What are these “items”?

I Any label jumped to:
I internal (why?)
I external (including library files)

I Any piece of data
I such as anything referenced by the la instruction

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Relocation Table

I List of “items” this file will need the address of later
(currently undetermined)

I What are these “items”?
I Any label jumped to:

I internal (why?)
I external (including library files)

I Any piece of data
I such as anything referenced by the la instruction

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Relocation Table

I List of “items” this file will need the address of later
(currently undetermined)

I What are these “items”?
I Any label jumped to:

I internal (why?)
I external (including library files)

I Any piece of data
I such as anything referenced by the la instruction

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Assembly

Object File Format
1. object file header: size and position of other pieces of the

object file
2. text segment: the machine code
3. data segment: data in the source file (binary)
4. relocation table: identifies lines of code that need “handling”
5. symbol table: list of this file’s labels and data that can be

referenced
6. debugging information: information to make tools like gdb

more effective

I A standard format is ELF
http:
//www.skyfree.org/linux/references/ELF_Format.pdf

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Linker I

I Input: Object files, information tables (e.g. foo.o)
I Output: Executable code (e.g. a.out)
I Combines several object (.o) files into a single executable

(linking)
I Enables separate compilation of files

I Changes to one file do not require recompiling of whole
program

I Old name ”Link Editor” from editing the “links” in jump and
link instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Linker II

object file 1
text 1
data 1
info 1

object file 1
text 2
data 2
info 2

Linker

a.out
relocated text 1
relocated text 2
relocated data 1
relocated data 2

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Linker III

1. Take text segment from each .o file and put them together
2. Take data segment from each .o file and put them together,

and concatenate this onto end of text segments
3. Resolve references

I Go through relocation table; resolve each entry
I I.e. fill in all absolute addresses

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Four Types of Addresses

I PC-Relative (beq, bne)
I Never relocate

I Absolute (j, jal)
I Always relocate

I External Reference (usually jal)
I Always relocate

I Data Reference (often lui and ori)
I Always relocate

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Four Types of Addresses

I PC-Relative (beq, bne)
I Never relocate

I Absolute (j, jal)
I Always relocate

I External Reference (usually jal)
I Always relocate

I Data Reference (often lui and ori)
I Always relocate

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Four Types of Addresses

I PC-Relative (beq, bne)
I Never relocate

I Absolute (j, jal)
I Always relocate

I External Reference (usually jal)
I Always relocate

I Data Reference (often lui and ori)
I Always relocate

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Four Types of Addresses

I PC-Relative (beq, bne)
I Never relocate

I Absolute (j, jal)
I Always relocate

I External Reference (usually jal)
I Always relocate

I Data Reference (often lui and ori)
I Always relocate

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Absolute Addresses in MIPS

I Which instructions need editing during relocation?
I j/jal: Use (pseudo)absolute address, need to know position

of code before filling in address

I lui/ori: If part of a la instruction, then need to know what
address the label refers to is

I beq/bne: Do NOT need to modify – branches are PC-relative,
and linking doesn’t change the relative position of lines of code
in a source file

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Absolute Addresses in MIPS

I Which instructions need editing during relocation?
I j/jal: Use (pseudo)absolute address, need to know position

of code before filling in address
I lui/ori: If part of a la instruction, then need to know what

address the label refers to is

I beq/bne: Do NOT need to modify – branches are PC-relative,
and linking doesn’t change the relative position of lines of code
in a source file

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Absolute Addresses in MIPS

I Which instructions need editing during relocation?
I j/jal: Use (pseudo)absolute address, need to know position

of code before filling in address
I lui/ori: If part of a la instruction, then need to know what

address the label refers to is
I beq/bne: Do NOT need to modify – branches are PC-relative,

and linking doesn’t change the relative position of lines of code
in a source file

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Resolving References I

I Linker assumes the first word of the first text segment is at
address 0x00000000

I But how do we run multiple programs?

I Virtual memory! (Covered later)

I Linker knows:
I Length of each text and data segment
I Ordering of text and data segments

I Linker calculates:
I Absolute address of each label to be jumped to (internal or

external) and each piece of data being referenced

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Resolving References I

I Linker assumes the first word of the first text segment is at
address 0x00000000

I But how do we run multiple programs?
I Virtual memory! (Covered later)

I Linker knows:
I Length of each text and data segment
I Ordering of text and data segments

I Linker calculates:
I Absolute address of each label to be jumped to (internal or

external) and each piece of data being referenced

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Resolving References II

I To resolve references:
1. Search for reference (data or label) in all “user” symbol tables
2. If not found, search library files (e.g. printf)
3. Once absolute address is determined, fill in the machine code

appropriately
I Output of linker: executable file containing text and data

(plus header)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Static vs. Dynamically Linked Libraries

I What we’ve described is the traditional way: statically linked
code

I All referenced code is part of the executable, so if a library
updates, we don’t get the fix (until we recompile)

I It includes the entire library, even if only a small part of it is
used

I Executable is self-contained
I An alternative is dynamic linking, or dynamically linked

libraries (DLL), common on both Windows and UNIX-like
platforms

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Dynamic Linking I

I Space/time issues
+ Storing a program requires less disk space
+ Sending a program requires less time
+ Executing two programs requires less memory (if they share a

library)
- At runtime, there’s time overhead to do the link

I Upgrades
+ Replacing one file upgrades every program that uses a library
- Having the executable isn’t enough anymore

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Dynamic Linking II

I Overall, dynamic linking adds quite a bit of complexity to the
compiler, linker, and the OS

I However, it provides many benefits that often outweigh the
added complexity

I For more info, see
http://en.wikipedia.org/wiki/Dynamic_linking

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://en.wikipedia.org/wiki/Dynamic_linking

C.A.L.L. Administrivia C.A.L.L. Summary

Linking

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Loading

Loader Basics

I Input: Executable code (e.g. a.out)
I Output: <program is run>

I Executable files are stored on disk
I When program is run, loader’s job is to load it into memory

and start it running
I In practice, the loader is done by the OS

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Loading

What the Loader Does

1. Reads executable file’s header to determine size of text and
data segments

2. Creates new address space for program large enough to hold
text and data segments, along with a stack segment

I This is more of that virtual memory business
3. Copies instructions and data from executable file into the new

address space

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Loading

What the Loader Does

4. Copies arguments passed to the program onto the stack
5. Initializes machine registers

I Most registers cleared, but stack pointer assigned address of
1st free stack location

6. Jumps to start-up routine that copies program’s arguments
from stack to registers and sets the PC

I If main routine returns, start-up routine terminates program
with the exit system call

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Loading

Question: Which statement is TRUE about the following code?

la $t0 , Array
Loop: lw $1 , 0($t0)

addi $t0 , $t0 , 4
bne $a0 , $t1 , Loop

Exit: nop

(blue) the la instruction will be edited during the linking phase
(green) The bne instruction will be edited during the linking phase
(purple) The assembler will ignore the instruction Exit:nop,
because it does nothing
(yellow) This was written by a human, since compilers don’t
generate pseudo-instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Loading

Question: Which statement is TRUE about the following code?

la $t0 , Array
Loop: lw $1 , 0($t0)

addi $t0 , $t0 , 4
bne $a0 , $t1 , Loop

Exit: nop

(blue) the la instruction will be edited during the linking phase
(green) The bne instruction will be edited during the linking phase
(purple) The assembler will ignore the instruction Exit:nop,
because it does nothing
(yellow) This was written by a human, since compilers don’t
generate pseudo-instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

CALL Example

C Program Source Code (prog.c)

include <stdio.h>
int main (int argc , char *argv []) {

int i, sum = 0;
for (i = 0; i <= 100; i += 1)

sum = sum + i * i;
/* Recall : printf declared in stdio.h */
printf ("sum of sq from 0 -100 = %d\n", sum ;)

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Compilation: MAL
Identify the 7 pseudo-instructions!

.text

. align 2

. globl main
main:

subu $sp , $sp , 32
sw $ra , 20($sp)
sd $a0 , 32($sp)
sw $0 , 24($sp)
sw $0 , 28($sp)

loop:
lw $t6 , 28($sp)
mul $t7 , $t6 , $t6
lw $t8 , 24($sp)
addu $t9 , $t8 , $t7
sw $t9 , 24($sp)

addu $t0 , $t6 , 1
sw $t0 , 28($sp)
ble $t0 ,100 , loop
la $a0 , str
lw $a1 , 24($sp)
jal printf
move $v0 , $0
lw $ra , 20($sp)
addiu $sp ,$sp ,32
jr $ra

.data

. align 0
str:

. asciiz "The sum
of sq from 0 ..
100 is %d\n"

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Compilation: MAL
Identify the 7 pseudo-instructions!

.text

. align 2

. globl main
main:

subu $sp, $sp, 32
sw $ra , 20($sp)
sd $a0, 32($sp)
sw $0 , 24($sp)
sw $0 , 28($sp)

loop:
lw $t6 , 28($sp)
mul $t7, $t6, $t6
lw $t8 , 24($sp)
addu $t9 , $t8 , $t7
sw $t9 , 24($sp)

addu $t0, $t6, 1
sw $t0 , 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1 , 24($sp)
jal printf
move $v0, $0
lw $ra , 20($sp)
addiu $sp ,$sp ,32
jr $ra

.data

. align 0
str:

. asciiz "The sum
of sq from 0 ..
100 is %d\n"

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Assembly
1. Remove pseudo instructions, assign addresses

00 addiu $29, $29, -32
04 sw $31 , 20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0 , 24($29)
14 sw $0 , 28($29)
18 lw $14 , 28($29)
1c multu $14 , $14
20 mflo $15
24 lw $24 , 24($29)
28 addu $25 , $24 , $15
2c sw $25 , 24($29)

30 addiu $8, $14, 1
34 sw $8 , 28($29)
38 slti $1, $8, 101
3c bne $1, $0, loop
40 lui $4, l.str
44 ori $4, $4, r.str
48 lw $5 , 24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31 , 20($29)
58 addiu $29 , $29 , 32
5c jr $31

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Assembly

2. Create relocation table and symbol table
I Symbol table

Label Address (in module) Type
main: 0x00000000 global text
loop: 0x00000018 local text
str: 0x00000000 local data

I Relocation table
Address Inst. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Assembly
3. Resolve local PC-relative labels

00 addiu $29 , $29 , -32
04 sw $31 , 20($29)
08 sw $4 , 32($29)
0c sw $5 , 36($29)
10 sw $0 , 24($29)
14 sw $0 , 28($29)
18 lw $14 , 28($29)
1c multu $14 , $14
20 mflo $15
24 lw $24 , 24($29)
28 addu $25 , $24 , $15
2c sw $25 , 24($29)

30 addiu $8 , $14 , 1
34 sw $8 , 28($29)
38 slti $1 , $8 , 101
3c bne $1 , $0 , -10
40 lui $4 , l.str
44 ori $4 , $4 , r.str
48 lw $5 , 24($29)
4c jal printf
50 add $2 , $0 , $0
54 lw $31 , 20($29)
58 addiu $29 , $29 , 32
5c jr $31

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Assembly

4. Generate object file:
I Output binary representation for

I text segment
I data segment
I symbol and relocation tables

I Using dummy “placeholders” for unresolved absolute and
external references

I Use all zeroes where immediate or target address should be

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Text Segment in Object File
0 x000000
0 x000004
0 x000008
0 x00000c
0 x000010
0 x000014
0 x000018
0 x00001c
0 x000020
0 x000024
0 x000028
0 x00002c
0 x000030
0 x000034
0 x000038
0 x00003c
0 x000040
0 x000044
0 x000048
0 x00004c
0 x000050
0 x000054
0 x000058
0 x00005c

00100111101111011111111111100000
10101111101111110000000000010100
10101111101001000000000000100000
10101111101001010000000000100100
10101111101000000000000000011000
10101111101000000000000000011100
10001111101011100000000000011100
10001111101110000000000000011000
00000001110011100000000000011001
00100101110010000000000000000001
00101001000000010000000001100101
10101111101010000000000000011100
00000000000000000111100000010010
00000011000011111100100000100001
00010100001000001111111111110111
10101111101110010000000000011000
00111100000001000000000000000000 ← l.str
10001111101001010000000000000000 ← r.str
00001100000100000000000011101100
00100100000000000000000000000000 ← printf
10001111101111110000000000010100
00100111101111010000000000100000
00000011111000000000000000001000
00000000000000000001000000100001

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Link
1. Combine prog.o and libc.o

I Merge text/data segments
I Create absolute memory addresses
I Modify & merge symbol and relocation tables
I Symbol table

Label Address
main 0x00000000
loop 0x00000018
str 0x10000430
printf 0x00000cb0

I Relocation table
Address Inst. Type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Link
2. Edit addresses in relocation table (shown in TAL for
legibility, actually done in binary)

00 addiu $29 , $29 , -32
04 sw $31 , 20($29)
08 sw $4 , 32($29)
0c sw $5 , 36($29)
10 sw $0 , 24($29)
14 sw $0 , 28($29)
18 lw $14 , 28($29)
1c multu $14 , $14
20 mflo $15
24 lw $24 , 24($29)
28 addu $25 , $24 , $15
2c sw $25 , 24($29)

30 addiu $8 , $14 , 1
34 sw $8 , 28($29)
38 slti $1 , $8 , 101
3c bne $1 , $0 , -10
40 lui $4 , 4096
44 ori $4 , $4 , 1072
48 lw $5 , 24($29)
4c jal 812
50 add $2 , $0 , $0
54 lw $31 , 20($29)
58 addiu $29 , $29 , 32
5c jr $31

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

An Example

Link

3. Output executable of merged modules
I Single text segment
I Single data segment
I Header detailing size of each segment

NOTE: This example was a very simplified version of how ELF
and other standard formats work, intended only to demonstrate the
basic principles of C.A.L.L.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Outline

C.A.L.L.
Compilation

Administrivia

C.A.L.L.
Assembly
Linking
Loading
An Example

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

C.A.L.L. Administrivia C.A.L.L. Summary

Summary

I Compiler converts a single HLL file into a single assembly file
I Assembler removes pseudo-instructions, converts what it can

into machine language, and creates a checklist for linker
(relocation table)

I Resolves addresses by making 2 passes (for forward references)
I Linker combines several object files and resolves absolute

addresses
I Enable separate compilation and use of libraries

I Loader loads executable into memory and begins execution

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

	C.A.L.L.
	Compilation

	Administrivia
	C.A.L.L.
	Assembly
	Linking
	Loading
	An Example

	Summary

