
Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

CS 61c: Great Ideas in Computer Architecture
MIPS Instruction Formats

Instructor: Alan Christopher

July 2, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Review

I New registers: $a0-$a3, $v0-$v1, $ra, $sp
I New instructions: slt, la, li, jal, jr
I Saved registers: $s0-$s7, $sp, $ra
I Volatile registers: $t0-$t9, $v0-$v1, $a0-$a3

I CalleR saves volatile registers it is using before making a
procedure call

I CalleE saves saved registers it uses and restores before
returning

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Question: Which statement below is TRUE about converting the
following C code to MIPS?

int factorial (int n) {
if(n == 0) return 1;
else return (n* factorial (n -1));

}

(blue) We do not need to move the stack at all.
(green) We must save $ra on the stack.
(purple) We could copy $a0 to $a1 to store n across recursive calls.
(yellow) We must save $a0 on the stack to save it across recursive
calls.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Question: Which statement below is TRUE about converting the
following C code to MIPS?

int factorial (int n) {
if(n == 0) return 1;
else return (n* factorial (n -1));

}

(blue) We do not need to move the stack at all.
(green) We must save $ra on the stack.
(purple) We could copy $a0 to $a1 to store n across recursive calls.
(yellow) We must save $a0 on the stack to save it across recursive
calls.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Compiler

Assembler

Machine Interpretation

Architecture Implementation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Outline

Instructions as Data
The Stored-Program Concept

Instruction Formats
R-Type

Administrivia

Instruction Formats
I-Type
J-Type

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

The Stored-Program Concept

Big Idea: Stored-Program Concept

I Encode instructions as binary data
I Instructions can be stored in memory and read/written just like

data
I Simplifies SW/HW of computer

I Same memory technology for instructions and data (because
instructions are data)

I Stored in memory, so both instructions and data words have
addresses

I A program is just an array of instructions
I Jump/branch logic is just a special form of pointer arithmetic!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

The Stored-Program Concept

Binary Compatibility

I Programs are (often) distributed in binary form
I Programs bound to specific instruction set
I e.g. different versions for (old) Macs vs. PCs

I New machines want to run old programs (“binaries”), as well
as programs compiled to new instructions

I Leads to backward compatible instruction sets that evolve
over time.

I The selection of x86 in 1981 for 1st IBM PC is a major reason
PCs still use x86 instruction set; you could run a program from
1981 PC today.

I One of the reason x86 is such an ugly language – it’s
accumulated a lot of cruft.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

The Stored-Program Concept

Instructions as Bits I

I Currently all data we work with is in words (except chars)
I All registers are a word wide
I lw and sw both access one word of memory

I How do we want to represent instructions?
I Remember: computer only sees 1s and 0s, so “add

$t0,$t0,$0” is meaningless
I KISS: data is in words, put instructions in words too

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

The Stored-Program Concept

Instructions as Bits II

I Divide the 32 bits of an instruction into fields
I Each field tells the processor something about the instruction
I Could use different fields for every instruction, but regularity

makes life simpler for the hardware designer, and the ISA
designer

I Define 3 types of instruction formats:
I R-type
I I-type
I J-type

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

The Stored-Program Concept

Instruction formats

I I-type: instructions with immediates, lw,sw (offset is an
immediate), and beq/bne

I Does not include shift instructions
I J-type: j and jal

I Does not include jr
I R-type: Everything else

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Outline

Instructions as Data
The Stored-Program Concept

Instruction Formats
R-Type

Administrivia

Instruction Formats
I-Type
J-Type

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Instructions I

I Define fields of with widths: 6 + 5 + 5 + 5 + 5 + 6 = 32

6 5 5 5 5 6
31 0

I Each field has a name:

opcode rs rt rd shamt funct
31 0

I Each field is viewed as its own unsigned int
I 5-bit fields can represent any number 0-31, while 6-bit fields

can represent any number 0-63

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Instructions II

I opcode (6): Partially specifies operation
I 0 for all R-type instructions

I funct (6): Specifies the instruction, when combined with the
opcode

I How many R-type instructions can we encode?

I Opcode is fixed, so 64
I Why not one 12-bit field?

I Makes life easier for the other instruction formats, as we’ll see.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Instructions II

I opcode (6): Partially specifies operation
I 0 for all R-type instructions

I funct (6): Specifies the instruction, when combined with the
opcode

I How many R-type instructions can we encode?
I Opcode is fixed, so 64

I Why not one 12-bit field?
I Makes life easier for the other instruction formats, as we’ll see.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Instructions III

I rs (5): specifies the register containing the 1st operand
(“source register”)

I rt (5): specifies the register containing the 2nd operand
(“target register”)

I rd (5): specifies the register which receives the result
(“destination register”)

I Recall: MIPS has 32 registers
I Register specifier fits perfectly in 5-bit field

I These map intuitively to instructions
I e.g. add dst, src1, src2 → add rd, rs, rt
I Depending on instruction, some fields may not be used

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Instructions IV

I shamt (5): The amount a shift instruction will shift by
I Shifting a 32-bit word by more than 31 is useless
I This field is set to 0 in all but shift instructions

I Use your Green Sheet for a detailed description of field usage
and instruction type for each instruction

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Example

I MIPS Instruction
add $8, $9, $10

I Pseudo-code
R[rd] = R[rs] + R[rt]

I Fields:
opcode = 0 (from Green Sheet)
funct = 32 (from Green Sheet)
rd = 8 (destination)
rs = 9 (first operand)
rt = 10 (second operand)
shamt = 0 (not a shift)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

R-Type Example

I MIPS Instruction: add $8, $9, $10

0 9 10 8 0 32
31 0Field representation (decimal)

0000 00 01 001 0 1010 0100 0 000 00 10 0000
31 0Field representation (binary)

hex representation: 0x012A4020
decimal representation: 19546144

I This is your first machine language instruction

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

NOP

I What is the instruction 0x00000000?
I opcode is 0, so it must be an R-type

I Using Green sheet, translates into
sll $0, $0, 0

I What does this do?

NOTHING!

I This is a special instruction called a nop (short for “no
operation”)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

NOP

I What is the instruction 0x00000000?
I opcode is 0, so it must be an R-type

I Using Green sheet, translates into
sll $0, $0, 0

I What does this do?

NOTHING!
I This is a special instruction called a nop (short for “no

operation”)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

R-Type

NOP

I What is the instruction 0x00000000?
I opcode is 0, so it must be an R-type

I Using Green sheet, translates into
sll $0, $0, 0

I What does this do? NOTHING!
I This is a special instruction called a nop (short for “no

operation”)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Outline

Instructions as Data
The Stored-Program Concept

Instruction Formats
R-Type

Administrivia

Instruction Formats
I-Type
J-Type

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Administrivia

I Midterm exam room and time finalized
I 5-8pm, 07/21
I 2050 VLSB

I Proj1/hw2 status check

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Outline

Instructions as Data
The Stored-Program Concept

Instruction Formats
R-Type

Administrivia

Instruction Formats
I-Type
J-Type

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

I-Type Instructions I

I What about instructions with immediates?
I 5-bit and 6-bit fields too small for most immediates

I Ideally, MIPS would only have one instruction format
(simplicity)

I But need to support larger immediates, so compromise
I Define a new instruction format which is partially consistent

with R-Type

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

I-Type Instructions II

I Define fields of with widths: 6 + 5 + 5 + 16 = 32

6 5 5 16
31 0

I Field names:

opcode rs rt immediate
31 0

I Important: The first three fields are consistent with R-Type
instructions

I Most importantly, opcode is still the the same place (this is
why we split up funct and opcode)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

I-Type Instructions III

I opcode (6): uniquely specifies the instruction
I All I-Type instructions have non-zero opcode (why?)

I rs (5): specifies a register operand
I Not always used

I rt (5): specifies register that receives result of computation
(“target register”)

I Name makes more sesnse for I-Type instructions than it did for
R-Type

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

I-Type Instructions IV

I immediate (16):
I All computations done in words, so 16 bit immediate must be

extended to 32 bits
I Green sheet specifies zeroExtImm or signExtImm based on

instruction
I Usually the “sensible thing” is done, but not always, so it’s

best to check when in doubt
I Can represent 216 different immediates

I Large enough for the vast majority of constants
I Load values into a register first when need larger constants

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

I-Type Example

I MIPS Instruction:
addi $21, $22, -50

I Pseudo-code
R[rt] = R[rs] + SignExtImm

I Fields:
opcode = 8 (from Green Sheet)
rs = 22 (source register)
rt = 21 (target register)
imm = -50 (could also specify in hex)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

I-Type Example

I MIPS Instruction: addi $21, $22, -50

8 22 21 -50
31 0Field representation (decimal)

0010 00 10 110 1 0101 1111 1111 1100 1110
31 0Field representation (binary)

hex representation: 0x22D5FFCE
decimal representation: 584449998

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Question: Which instruction has the same representation as 3510?

Instruction OPCODE/FUNCT Register name:numbers
subu 0/35 0: $0
lw 35/-- 8-15: $t0-$t7
addi 8/-- 16-23: $s0-$s7

(blue) subu $s0, $s0, $s0
(green) lw $0, 0($0)
(purple) addi $0, $0, 35
(yellow) subu $0,$0,$0

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Question: Which instruction has the same representation as 3510?

Instruction OPCODE/FUNCT Register name:numbers
subu 0/35 0: $0
lw 35/-- 8-15: $t0-$t7
addi 8/-- 16-23: $s0-$s7

(blue) subu $s0, $s0, $s0
(green) lw $0, 0($0)
(purple) addi $0, $0, 35
(yellow) subu $0,$0,$0

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Large Immediates

I How do we deal with 32-bit immediates?
I Sometimes want to use immediates not in the range

[−215, 215) with addi, lw ,sw, slti
I Bitwise operations with 32-bit numbers

I Solution: Don’t mess with instruction formats, just add a
new instruction

I Load Upper Immediate (lui)
I lui reg, imm
I Moves 16-bit imm into upper half of reg (bits 16-31) and zeros

out the lower half (bits 0-15)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

lui Example
I Want: addiu $t0, $t0, 0xABABCDCD

I This is a pseudo-instruction!

I Translates into:
lui $at, 0xABAB # upper 16
ori $at, $at, 0xCDCD # lower 16
addu $t0, $t0, $at # move

I Can efficiently handle 32-bit immediates now!
I Note: only assember should use $at

I Could we handle 32 bit immediates without a lui instruction?

I Sure! Break lui into ori and sll:
ori $at, $0, 0xABAB
sll $at, $at, 16

I So lui doesn’t make our code more powerful, but it does make it
more efficient.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

lui Example
I Want: addiu $t0, $t0, 0xABABCDCD

I This is a pseudo-instruction!
I Translates into:

lui $at, 0xABAB # upper 16
ori $at, $at, 0xCDCD # lower 16
addu $t0, $t0, $at # move

I Can efficiently handle 32-bit immediates now!
I Note: only assember should use $at

I Could we handle 32 bit immediates without a lui instruction?

I Sure! Break lui into ori and sll:
ori $at, $0, 0xABAB
sll $at, $at, 16

I So lui doesn’t make our code more powerful, but it does make it
more efficient.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

lui Example
I Want: addiu $t0, $t0, 0xABABCDCD

I This is a pseudo-instruction!
I Translates into:

lui $at, 0xABAB # upper 16
ori $at, $at, 0xCDCD # lower 16
addu $t0, $t0, $at # move

I Can efficiently handle 32-bit immediates now!
I Note: only assember should use $at

I Could we handle 32 bit immediates without a lui instruction?

I Sure! Break lui into ori and sll:
ori $at, $0, 0xABAB
sll $at, $at, 16

I So lui doesn’t make our code more powerful, but it does make it
more efficient.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

lui Example
I Want: addiu $t0, $t0, 0xABABCDCD

I This is a pseudo-instruction!
I Translates into:

lui $at, 0xABAB # upper 16
ori $at, $at, 0xCDCD # lower 16
addu $t0, $t0, $at # move

I Can efficiently handle 32-bit immediates now!
I Note: only assember should use $at

I Could we handle 32 bit immediates without a lui instruction?
I Sure! Break lui into ori and sll:

ori $at, $0, 0xABAB
sll $at, $at, 16

I So lui doesn’t make our code more powerful, but it does make it
more efficient.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branching Instructions

I beq and bne
I Need to specify an address to go to
I Also take two registers to compare

I Use I-Type:

opcode rs rt immediate
31 0

I opcode specifies beq vs. bne
I rs and rt specify registers
I How to use immediate to specify addresses?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branching Instruction Usage

I Branches typically used for loops (if-else, while, for)
I Loops are generally small (< 50 instructions)
I Function calls and unconditional jumps usually handled with

jump instructions (J-Type)
I Recall: Instructions stored in a single segment of memory

(Code/Text)
I Largest branch distance limited by size of code
I Address of current instruction stored in the program counter

(PC)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

PC-Relative Addressing

I PC-Relative Addressing: Use the immediate field as a two’s
complement offset to PC

I Branches generally change the PC by a small amount
I can specify ±215 addresses around the PC

I So just how much memory can we reach?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branching Reach

I Recall: MIPS uses 32-bit address
I Memory is byte-addressed

I Instructions are word-aligned
I Address is always a multiple of 4, meaning it ends with 0b00 in

binary
I Number of bytes to add to the PC will always be a multiple of

4
I Immediate specifies words instead of bytes

I Can branch ±215 words
I Can reach 216 instructions = 218 bytes around the PC

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branch Calculation

I If we don’t take the branch:
I PC = PC+4 = next instruction

I If we do take the branch
I PC = (PC+4)+(Immediate*4)

I Observe:
I immediate is number of instructions to jump, either forward

(positive), or backwards (negative)
I Branch from PC+4 for hardware reasons

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branch Example

I MIPS Code:

Loop: beq $9 , $0 , End
addu $8 , $8 , $10 # 0
addiu $9 , $9 , -1 # 1
j Loop # 2

End: <some instr > # 3

I I-Type fields:
opcode = 4 (from Green Sheet)
rs = 9 (source register)
rt = 0 (target register)
imm = ???

imm = 3

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branch Example

I MIPS Code:

Loop: beq $9 , $0 , End
addu $8 , $8 , $10 # 0
addiu $9 , $9 , -1 # 1
j Loop # 2

End: <some instr > # 3

I I-Type fields:
opcode = 4 (from Green Sheet)
rs = 9 (source register)
rt = 0 (target register)
imm = 3

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Branch Example

I MIPS Code:

Loop: beq $9 , $0 , End
addu $8 , $8 , $10 # 0
addiu $9 , $9 , -1 # 1
j Loop # 2

End: <some instr > # 3

4 9 0 3
31 0Field representation (decimal)

000100 01001 00000 0000000000000011
31 0Field representation (binary)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Questions on PC-Addressing

I Does the value in branch immediate field change if we move
the code?

I If moving individual lines of code, then yes
I If moving all of code, then no

I What do we do if destination is > 215 instructions away from
branch?

I Use a jump

beq $s0 , $0 , far
#next inst

bne $s0 , $0 , next
j far
next: #next inst

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Questions on PC-Addressing

I Does the value in branch immediate field change if we move
the code?

I If moving individual lines of code, then yes
I If moving all of code, then no

I What do we do if destination is > 215 instructions away from
branch?

I Use a jump

beq $s0 , $0 , far
#next inst

bne $s0 , $0 , next
j far
next: #next inst

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

I-Type

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

J-Type Instructions I

I For branches we assumed that we won’t want to branch too
far, so we can specify a change in the PC

I For true jump instructions (j and jal) we may want to jump
to anywhere in memory

I Ideally, we could specify a 32-bit memory address to which to
jump

I Unfortunately, we can’t fit a 32-bit address and a 6-bit opcode
into 32 bits

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

J-Type Instructions II

I Define fields of with widths: 6 + 26 = 32

6 26
31 0

I Field names:

opcode Jump Address
31 0

I Key Concepts:
I Keep opcode field identical to R-Type and I-Type for

consistency
I Collapse all other fields to make room for large jump address

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

J-Type Instructions III

I We can specify 226 addresses
I Still going to word-aligned instructions, so add 0b00 to the

last two bits (i.e. multiply by 4)
I Still only have 28 bits of 32-bit address

I Take the 4 highest order bits from the PC
I Cannot reach everywhere, but adequate in almost all

circumstances
I Only a problem if code straddles a 256MiB boudnary

I If necessary, use 2 jumps or jr instead

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

J-Type Instructions III

I We can specify 226 addresses
I Still going to word-aligned instructions, so add 0b00 to the

last two bits (i.e. multiply by 4)
I Still only have 28 bits of 32-bit address

I Take the 4 highest order bits from the PC
I Cannot reach everywhere, but adequate in almost all

circumstances
I Only a problem if code straddles a 256MiB boudnary

I If necessary, use 2 jumps or jr instead

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

J-Type Instructions IV

I Jump instruction
I New PC = { (PC+4)[31..28], jump address, 0b00 }

I Note:
I { , , } means concatenation
I Array indexing: [31..28] means highest 4 bits of PC
I For hardware reasons, use PC+4 instead of PC

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

When combining two compiled C files into one MIPS executable,
we can compile them independently and then merge them
together.

Question: When merging two or more binaries:
1. Jump instructions don’t require any changes
2. Branch instructions don’t require any changes

(blue) F F
(green) F T
(purple) T F
(yellow) T T

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

J-Type

When combining two compiled C files into one MIPS executable,
we can compile them independently and then merge them
together.

Question: When merging two or more binaries:
1. Jump instructions don’t require any changes
2. Branch instructions don’t require any changes

(blue) F F
(green) F T

(purple) T F
(yellow) T T

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

Outline

Instructions as Data
The Stored-Program Concept

Instruction Formats
R-Type

Administrivia

Instruction Formats
I-Type
J-Type

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Instructions as Data Instruction Formats Administrivia Instruction Formats Summary

And in Conclusion

I The Stored Program concept is very powerful
I Instructions can be treated and manipulated the same way as

data in both hardware and software
I MIPS Machine language instructions:

opcode rs rt rd shamt funct

opcode rs rt immediate

opcode jump address

R:

I:

J:

I Branches use PC-relative addressing, jumps use
(pseudo)absolute addressing

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

