
Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

CS 61c: Great Ideas in Computer Architecture
MIPS Functions

Instructor: Alan Christopher

July 1, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Review I

I RISC Design Principles
I Smaller is faster: 32 registers, fewer instructions
I Keep it simple: rigid syntax, fixed instruction length

I MIPS Registers: $s0-$s7,$t0-$t9, $0
I Only operands used by instructions
I No variable types, just bits

I Memory is byte-addressed
I Need to watch endianness when mixing words and bytes

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Review II

I MIPS Instructions
I Arithmetic: add,sub, addi, mult, div, addu, subu, addiu
I Data Transfer: lw, sw, lb, sb, lbu
I Branching: beq, bne, j
I Bitwise: and,andi, or, ori, nor, xor, xori
I Shifting: sll, sllv, srl, srlv, sra, srav

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Compiler

Assembler

Machine Interpretation

Architecture Implementation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Outline

Inequalities
ISA Support

Pseudo-instructions
Why and What

Administrivia

Functions in MIPS
Implementation
Calling Conventions

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

Inequalities in MIPS

I Inequality tests: <, <=, >, >=
I RISC-y idea: Use one instruction for all of them

I Set on Less Than (slt)
I slt dst, src1, src2
I Stores 1 in dst if src1 < src2, else 0

I Combine with bne, beq, and $0, to implement comparisons

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

Inequalities in MIPS

I C Code:

if (a < b) {
... /* then */
}

I MIPS Code:
#a->$s0, b->$s1

$t0 = (a < b)
slt $t0, $s0, $s1
if (a < b) goto then
bne $t0, $0, then

I Try to work out the other two on your own:
I try swapping src1 and src2
I try switching beq and bne

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

Inequalities in MIPS

I C Code:

if (a < b) {
... /* then */
}

I MIPS Code:
#a->$s0, b->$s1

$t0 = (a < b)
slt $t0, $s0, $s1
if (a < b) goto then
bne $t0, $0, then

I Try to work out the other two on your own:
I try swapping src1 and src2
I try switching beq and bne

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

Immediates in Inequalities

I Three other variants of slt
I sltu dst,src1,src2: unsigned comparison
I slti dst,src,imm: compare against constant
I sltiu dst,src,imm: unsigned comparison against constant

I Example:
addi $s0,$0,-1 # $s0=0xFFFFFFFF
slti $t0,$s0,1 # $t0=1
sltiu $t1,$s0,1 # $t1=0

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

MIPS Signed vs. Unsigned

I MIPS terms “signed” and “unsigned” appear in 3 different
contexts:

I Signed vs. unsigned bit extension
I lb
I lbu

I Detect vs. don’t detect overflow
I add, addi, sub, mult, div
I addu, addiu, subu, multu, divu

I Signed vs. unsigned comparison
I slt, slti
I sltu, sltiu

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

Question: What C code properly fills in the following blank?

do {i--;} while (________________);

Loop: # i-0>$s0, j->$s1
addi $s0, $s0, -1
slti $t0, $s1, 2
beq $t0, $0, Loop
slt $t0, $s1, $s0
bne $t0, $0, Loop

(blue) j >= 2 || j < i
(green) j >= 2 && j < i
(purple) j < 2 || j >= i
(yellow) j < 2 && j >= i

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

ISA Support

Question: What C code properly fills in the following blank?

do {i--;} while (________________);

Loop: # i->$s0, j->$s1
addi $s0, $s0, -1 # i = i - 1
slti $t0, $s1, 2 # $t0 = (j < 2)
beq $t0, $0, Loop # goto Loop if $t0 == 0
slt $t0, $s1, $s0 # $t0 = (j < i)
bne $t0, $0, Loop # goto Loop if $t0 != 0

(blue) j >= 2 || j < i
(green) j >= 2 && j < i
(purple) j < 2 || j >= i
(yellow) j < 2 && j >= i

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Outline

Inequalities
ISA Support

Pseudo-instructions
Why and What

Administrivia

Functions in MIPS
Implementation
Calling Conventions

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Why and What

Assembler Pseudo-Instructions

I Certain C statements are implemented unintuitively in MIPS
I e.g. assignment (a=b) via addition with 0

I MIPS has a set of “pseudo-instructions” to make
programming easier

I More intuitive to read, but get translated into actual
instructions later

I Example:
move dst,src is translated to
addi dst,src,0

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Why and What

Assembler Pseudo-Instructions
I List of pseduo-instructions:

http://en.wikipedia.org/wiki/MIPS_architecture#
Pseudo_instructions

I List also includes the translations for each instruction
I Load Address (la)

I la dst, label
I Loads address of specified label into dst

I Load Immediate (li)
I li dst, imm
I Loads a 32-bit immediate into dst

I MARS supports more pseudo-instructions (see help)
I Don’t go overboard, it’s easy to confuse yourself with esoteric

syntax.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://en.wikipedia.org/wiki/MIPS_architecture#Pseudo_instructions
http://en.wikipedia.org/wiki/MIPS_architecture#Pseudo_instructions

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Why and What

Assembler Register

I Problem:
I When breaking up a pseudo-instruction, the assembler may

need to use an extra register
I If it uses a regular register it might overwrite data that the

program was using

I Solution:
I Reserve a register ($1 or $at for “assembler temporary”) that

assembler will use to break up pseudo-instructions
I Since the assembler may use this at any time, it’s not safe to

code with it

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Why and What

Assembler Register

I Problem:
I When breaking up a pseudo-instruction, the assembler may

need to use an extra register
I If it uses a regular register it might overwrite data that the

program was using
I Solution:

I Reserve a register ($1 or $at for “assembler temporary”) that
assembler will use to break up pseudo-instructions

I Since the assembler may use this at any time, it’s not safe to
code with it

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Why and What

MAL vs. TAL

I True Assembly Language (TAL)
I The instructions a computer understands and executes

I MIPS Assembly Language (MAL)
I Instructions the assembly programmer can use (including

pseudo-instructions)
I Each MAL instruction maps directly to 1 or more TAL

instructions
I TAL ⊂ MAL

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Outline

Inequalities
ISA Support

Pseudo-instructions
Why and What

Administrivia

Functions in MIPS
Implementation
Calling Conventions

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Administriva

I HW2 due Friday
I HW3 due Sunday
I No class (lab or lecture) on Thursday

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Outline

Inequalities
ISA Support

Pseudo-instructions
Why and What

Administrivia

Functions in MIPS
Implementation
Calling Conventions

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Six Steps of Calling a Function

1. Put arguments in place where the function can access them
2. Transfer control to the function
3. The function will acquire any (local) storage resources it needs
4. The function performs its desired task
5. The function puts return value in an accessible place and

“cleans up”
6. Control is returned to the caller

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

MIPS Registers for Function Calls

I Registers are much faster than memory, so use them whenever
possible

I $a0-$a3: four argument registers to pass parameters
I $v0-$v1: two value registers for return values
I $ra: return address register that saves

where a function is called from

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

MIPS Instructions for Function Calls

I Jump and Link (jal)
I Saves the location of the following instruction in register $ra

and then jumps to label (function address)
I Used to invoke a function

I Jump Register (jr)
I jr src
I Unconditionally jump to the address specified in src (almost

always used with $ra)
I Most commonly used to return from a function

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Instruction Addresses

I jal puts the address of an instruction in $ra
I Instructions are stored as data in memory!

I Recall: Code Section
I In MIPS, all instructions are 4 bytes long, so each instruction

address differs by 4
I Remember: Memory is byte-addressed

I Labels get converted to instruction address eventually

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Program Counter

I The program counter (PC) is a special register that holds the
address of the current instruction being executed

I This register is not (directly) accessible to the programmer, (is
accessible to jal)

I jal stores PC + 4 into $ra
I Why not PC + 1?
I What would happen if we stored PC instead?

I All branches and jumps (beq, bne, j, jal, jr) work by
storing an address into PC

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Function Call Example

... sum(a,b); ... /* a->$s0 ,b->$s1 */
int sum(int x, int y) {

return x + y;
}

Address MIPS
1000 addi $a0, $s0, 0 # x = a
1004 addi $a1, $s1, 0 # y = b
1008 jal sum # $ra = 1012, goto sum
1012
...
2000 sum: add $v0,$a0,$a1
2004 jr $ra # return

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Six Steps of Calling a Function

1. Put arguments in place where the function can access them
($a0-$a3)

2. Transfer control to the function (jal)
3. The function will acquire any (local) storage resources it needs
4. The function performs its desired task
5. The function puts return value in an accessible place

($v0-$v1) and “cleans up”
6. Control is returned to the caller (jr)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Saving and Restoring Registers

I Why might we need to save registers?

I Limited number of registers to use
I what happens if a function calls another function? ($ra would

get overwritten!)
I Where should we save registers?

The stack

I $sp (stack pointer) register contains pointer to the current
bottom (last used space) of the stack

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Saving and Restoring Registers

I Why might we need to save registers?
I Limited number of registers to use
I what happens if a function calls another function? ($ra would

get overwritten!)
I Where should we save registers?

The stack
I $sp (stack pointer) register contains pointer to the current

bottom (last used space) of the stack

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Saving and Restoring Registers

I Why might we need to save registers?
I Limited number of registers to use
I what happens if a function calls another function? ($ra would

get overwritten!)
I Where should we save registers? The stack
I $sp (stack pointer) register contains pointer to the current

bottom (last used space) of the stack

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Review: Memory Layout

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Example: sum square

int sum_square (int x, int y) {
return mult(x, x) + y;

}

I What do we need to save?
I Call to mult will overwrite $ra, so save it
I Reusing $a1 to pass 2nd argument to mult, but need current

value (y) later, so save $a1
I To save something on the stack, move $sp down the required

amount and fill the “created” space.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Example: sum square
int sum_square (int x, int y) {

return mult(x, x) + y;
}

sum_square :
Push the stack
addi $sp, $sp, -8 # make space on stack
sw $ra, 4($sp) # save ret addr
sw $a1, 0($sp) # save y
add $a1 , $a0 , $zero # set 2nd mult arg
jal mult # call mult
lw $a1, 0($sp) # restore y
add $v0 , $v0 , $a1 # retval = mult(x, x) + y
Pop the stack
lw $ra, 4($sp) # get ret addr
addi $sp, $sp, 8 # restore stack
jr $ra

mult: ...
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Canonical Function Structure
I Prologue:

func_label :
addiu $sp , $sp , -framesize
sw $ra , <framesize - 4> ($sp)
... # save other registers as needed

I Body
... # whatever the function actually does

I Epilogue

... # restore other registers as needed
lw $ra , <framesize - 4> ($sp)
addiu $sp , $sp , framesize

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Local Variables and Arrays

I Any local variables the compiler cannot assign to registers will
be allocated as part of the stack frame (Recall: spilling to
memory)

I Locally declared arrays and structs are also allocated on the
stack frame

I Stack manipulation is the same as before
I Move $sp down an extra amount and use the space created as

storage

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Stack Before, During, After Call

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Implementation

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Register Conventions

I CalleR: The calling function
I CalleE: The function being called
I Register Conventions: A set of generally accepted rules

governing which registers will be unchanged after a procedure
call (jal) and which may have changed (“been clobbered”)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Saved Registers

I These registers are expected to be the same before and after a
function

I If the calleE uses them, it must restore the values before
returning

I Usually means saving the old values, using the register, and
then reloading the old values back into the registers

I $s0-$s7 (saved registers)
I $sp (stack pointer)
I $ra (return address)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Saved Registers

I These registers are expected to be the same before and after a
function

I If the calleE uses them, it must restore the values before
returning

I Usually means saving the old values, using the register, and
then reloading the old values back into the registers

I $s0-$s7 (saved registers)

I $sp (stack pointer)
I $ra (return address)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Saved Registers

I These registers are expected to be the same before and after a
function

I If the calleE uses them, it must restore the values before
returning

I Usually means saving the old values, using the register, and
then reloading the old values back into the registers

I $s0-$s7 (saved registers)
I $sp (stack pointer)

I $ra (return address)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Saved Registers

I These registers are expected to be the same before and after a
function

I If the calleE uses them, it must restore the values before
returning

I Usually means saving the old values, using the register, and
then reloading the old values back into the registers

I $s0-$s7 (saved registers)
I $sp (stack pointer)
I $ra (return address)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Volatile Registers

I These registers can be freely changed by the calleE
I If calleR needs them, it must save those values before making

a procedure call

I $t0-$t9 (temporary registers)
I $v0-$v1 (return values)

I These will contain the functions return values
I $a0-$a3 (return address and arguments)

I These will change if the calleE invokes another function
I Nested functions mean that calleE is also a calleR

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Volatile Registers

I These registers can be freely changed by the calleE
I If calleR needs them, it must save those values before making

a procedure call
I $t0-$t9 (temporary registers)

I $v0-$v1 (return values)
I These will contain the functions return values

I $a0-$a3 (return address and arguments)
I These will change if the calleE invokes another function
I Nested functions mean that calleE is also a calleR

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Volatile Registers

I These registers can be freely changed by the calleE
I If calleR needs them, it must save those values before making

a procedure call
I $t0-$t9 (temporary registers)
I $v0-$v1 (return values)

I These will contain the functions return values

I $a0-$a3 (return address and arguments)
I These will change if the calleE invokes another function
I Nested functions mean that calleE is also a calleR

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Volatile Registers

I These registers can be freely changed by the calleE
I If calleR needs them, it must save those values before making

a procedure call
I $t0-$t9 (temporary registers)
I $v0-$v1 (return values)

I These will contain the functions return values
I $a0-$a3 (return address and arguments)

I These will change if the calleE invokes another function
I Nested functions mean that calleE is also a calleR

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Register Conventions Summary

I One more time:
I CalleR must save any volatile registers it is using onto the

stack before making a procedure call
I CalleE must save any saved registers before clobbering their

contents
I Notes:

I CalleR and calleE only need to save the registers they actually
use (not all!)

I Don’t forget to restore values after finished clobbering registers
I Analogy: Throwing a party while your parents are away

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Example: Using Saved Registers

myFunc : # Uses $s0 and $s1
addiu $sp , $sp , -12 # This is the Prologue
sw $ra , 8($sp) # Save saved registers
sw $s0 , 4($sp)
sw $s1 , 0($sp)
... # Do stuff with $s0, $s1
jal func1 # $s0 , $s1 unchanged by func
... # calls , so can keep using
jal func2 # them normally .
... # Do stuff with $s0, $s1
lw $s1 , 0($sp) # This is the Epilogue
lw $s0 , 4($sp) # Restore saved registers
lw $ra , 8($sp)
addiu $sp , $sp , 12
jr $ra # return

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Example: Using Volatile Registers

myFunc : # Uses $s0 and $s1
addiu $sp , $sp , -4 # This is the Prologue
sw $ra , 0($sp) # Save saved registers
... # Do stuff with $t0
addiu $sp , $sp , -4 # Save volatile registers
sw $t0 , 0($sp) # before func call
jal func1 # function may clobber $t0
lw $t0 , 0($sp) # Restore volatile registers
addiu $sp , $sp , 4
... # Do stuff with $t0

lw $ra , 0($sp) # This is the Epilogue
addiu $sp , $sp , 4 # Restore saved registers
jr $ra # return

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Choosing your Registers

I Minimize register footprint
I Optimize to reduce number of registers you need to save by

choosing which registers to use in a function
I Only save to memory when absolutely necessary

I Leaf functions
I Use only $t0-$t9 and there is nothing to save

I Functions that call other functions
I Values that you need throughout go in $s0-$s7
I Others go in $t0-$t9

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Question: Which statement below is FALSE?
(blue) MIPS uses jal to invoke functions and jr to return from
functions
(green) jal saves PC+1 in $ra
(purple) The callee can use temporary registers ($t#) without
saving and restoring them
(yellow) The caller can rely on save registers ($s#) without fear of
the callee changing them

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Calling Conventions

Question: Which statement below is FALSE?
(blue) MIPS uses jal to invoke functions and jr to return from
functions

(green) jal saves PC+1 in $ra
(purple) The callee can use temporary registers ($t#) without
saving and restoring them
(yellow) The caller can rely on save registers ($s#) without fear of
the callee changing them

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

Outline

Inequalities
ISA Support

Pseudo-instructions
Why and What

Administrivia

Functions in MIPS
Implementation
Calling Conventions

Summary

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

And in Conclusion I

I Inequalities done using slt and allow us to implement the
rest of control flow

I Pseudo-instructions make code more readable
I Part of MAL, translated into TAL

I MIPS function implementation
I Jump and link (jal) invokes, jump register (jr $ra) returns
I Registers $a0-$a3 for arguments, $v0,$v1 for return values

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Inequalities Pseudo-instructions Administrivia Functions in MIPS Summary

And in Conclusion II

I Register conventions preserve values of registers between
function calls

I Different responsibilities for the caller and callee
I Registers split between saved and volatile

I Use the stack for spilling registers, saving return addresses,
and local variables

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

