
Assembly I Administrivia Assembly II Bonus Material

CS 61c: Great Ideas in Computer Architecture
Introduction to Assembly Language

Instructor: Alan Christopher

June 30, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Review

I C Memory Layout
I Local variables disappear because the stack changes
I Global variables don’t disappear because they are in static data
I Dynamic memory available using malloc() and free()

I Memory Management
I K&R: first-fit, last-fit, best-fit for malloc()

I Many common memory problems

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Compiler

Assembler

Machine Interpretation

Architecture Implementation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Outline
Assembly I

What is machine language
Registers

Administrivia

Assembly II
Instructions and Immediates
Data Transfer Instructions
Decision Instructions

Bonus Material
C to MIPS
Additional Instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Machine Language I

I instruction: a “word” that a computer understands
I ISA (instruction set architecture): Vocabulary of all the

“words” a computer understands
I When to use the same ISA, when to use different?

I e.g. iPhone and iPad use the same
I e.g. iPhone and Macbook use different

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Machine Language II

I Single ISA
I Leverage common compilers, operating systems, etc
I BUT relatively easy to retarget these for different ISAs

I Multiple ISAs
I Specialized instructions for specialized applications
I Different tradeoffs in resources used (e.g. functionality,

memory demands, complexity, power consumption, etc)
I Competition and innovation is good, especially in emerging

environments (e.g. mobile devices)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Why Study Assembly?

I Understand computers at a deeper level
I Learn to write more compact and efficient code
I Can sometimes optimize better by hand than a compiler can

(sometimes)
I More sensible for minimal applications

I e.g. embedded computers
I Eliminating OS, compilers, etc, reduces size and power

consumption
I Embedded computers outnumber PCs (by a lot)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Reduced Instruction Set Computing

I The early trend was to add more and more instructions to do
elaborate operations – known as Complex Instruction Set
Computing (CISC)

I Opposite philosophy emerged later: Reduced Instruction Set
Computing (RISC)

I Simpler (and smaller) instruction set makes it easier to build
fast hardware

I Let software do the complicated operations by composing
simpler ones

I KISS!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Reduced Instruction Set Computing

I The early trend was to add more and more instructions to do
elaborate operations – known as Complex Instruction Set
Computing (CISC)

I Opposite philosophy emerged later: Reduced Instruction Set
Computing (RISC)

I Simpler (and smaller) instruction set makes it easier to build
fast hardware

I Let software do the complicated operations by composing
simpler ones

I KISS!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Common RISC Simplifications

I Fixed instruction length:
Simplifies fetching instructions from memory

I Simplified addressing modes:
Simplifies fetching operands from memory

I Fewer, simpler instructions in the ISA:
Simplifies instruction execution

I Minimize memory access instructions (load/store):
Simplifies hardware for memory accesses

I Let compiler do heavy lifting
Breaks complex statements into multiple assembly instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

What is machine language

Mainstream ISAs

I Intel 80x86
I Commonly used in PCs and laptops
I Found in Core i3, Core i5, Core i7, etc.

I Advanced RISC Machine (ARM)
I Smart phone-like devices: iPhone, iPad, iPod, etc
I The most popular RISC by number of chips (20x more

common than x86)
I MIPS (what we’ll be learning)

I Networking equipment, PS2, PSP
I Very similar to ARM

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Registers

Five Components of a Computer

I Important: Computers are subdivided into 5 parts

I Control
I Datapath
I Memory
I Input
I Output

I Registers are part of the datapath

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Registers

Hardware Operands

I In high-level langauges, number of variables limited only by
available memory

I ISAs have a fixed, small number of operands, called registers
I Special memory built directly into hardware
I Benefit: Registers are extremely fast (less than 1 ns to access)
I Drawback: Operations can only be performed on this fixed

number of registers

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Registers

MIPS Registers I

I MIPS has 32 registers
I Each register is 32 bits wide and holds a word

I Tradeoff between speed and availability
I Smaller number means faster hardware, but insufficient to hold

data for typical C programs
I Registers have no type: The operation being performed

determines how register contents are treated

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Registers

MIPS Registers II

I Registers are denoted by ’$’, can be referenced by number
(e.g. $23), or by name:

I Registers that hold programmer variables
$s0-$s7 ↔ $16-$23

I Registers that hold temporary variables
$t0-$t7 ↔ $8-$15
$t8-$t9 ↔ $24-$25

I We’ll cover the other 14 registers later
I In general using register names makes code more readable

than using register numbers.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Outline
Assembly I

What is machine language
Registers

Administrivia

Assembly II
Instructions and Immediates
Data Transfer Instructions
Decision Instructions

Bonus Material
C to MIPS
Additional Instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Administrivia

I Project 1 spec updated
I All changes tracked on the project spec in the change log

I Project 1 skeleton updated
I Minor bug fix to avoid crashing when non-existent path

provided
I Just pull from GitHub again to get most up to date version

I Piazza #salmonella tag
I Staff will apply to posts that are “half baked”, as per the

course syllabus

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Outline
Assembly I

What is machine language
Registers

Administrivia

Assembly II
Instructions and Immediates
Data Transfer Instructions
Decision Instructions

Bonus Material
C to MIPS
Additional Instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions I

I Instruction syntax is rigid:
op dst, src1, src2

I 1 operator, 3 operands
I op = operation name (“operator”)
I dst = register getting result (“destination”)
I src1 = first register for operation (“source 1”)
I src2 = second register for operation (“source 2”)

I Keeps hardware simple via regularity

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions II

I One operation per instruction, at most one instruction per line
I Assembly instructions are related to C operations (=, +, -, *,

/, &, |, etc.)
I Must be, since C decomposes into assembly!
I A single line of C may break up to several lines of MIPS

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions Example

I Your very first instructions!
(assume here that the variables a, b, c are assigned to
registers $s1, $s2, $s3, respectively)

I Integer Addition (add)
I C: a = b + c
I MIPS: add $s1, $s2, $s3

I Integer Subtraction (sub)
I C: a = b - c
I MIPS: sub $s1, $s2, $s3

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions Example

I Your very first instructions!
(assume here that the variables a, b, c are assigned to
registers $s1, $s2, $s3, respectively)

I Integer Addition (add)
I C: a = b + c
I MIPS: add $s1, $s2, $s3

I Integer Subtraction (sub)
I C: a = b - c
I MIPS: sub $s1, $s2, $s3

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions Example

I Your very first instructions!
(assume here that the variables a, b, c are assigned to
registers $s1, $s2, $s3, respectively)

I Integer Addition (add)
I C: a = b + c
I MIPS: add $s1, $s2, $s3

I Integer Subtraction (sub)
I C: a = b - c
I MIPS: sub $s1, $s2, $s3

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions Example

I Suppose a↔$s0, b↔$s1, c↔$s2, d↔$s3, e↔$s4. Convert
the following C statement to MIPS:

a = (b + c) - (d + e);

add $t1, $s3, $s4
add $t2, $s1, $s2
sub $s0, $t2, $t1

I Notice: order of instructions must follow order of operations
in C

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

MIPS Instructions Example

I Suppose a↔$s0, b↔$s1, c↔$s2, d↔$s3, e↔$s4. Convert
the following C statement to MIPS:

a = (b + c) - (d + e);

add $t1, $s3, $s4
add $t2, $s1, $s2
sub $s0, $t2, $t1

I Notice: order of instructions must follow order of operations
in C

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

Comments in MIPS

I Comments in MIPS follow hash marks (#) until the end of line

I Improves readability and helps you keep track of
variables/registers

I MIPS is in NO way self-documenting, make good use of
comments
add $t1, $s3, $s4 # $t1=d+e
add $t2, $s1, $s2 # $t2=b+c
sub $s0, $t2, $t1 # a=(b+c)-(d+e)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

The Zero Register

I Zero appears so often in code and is so useful that we give it
its own register

I Register zero ($0 or $zero) always has the value 0, and
cannot be changed

I Any instruction which writes to $0 has no effect
I Example uses:

I add $s2, $0, $0 # c=0
I add $s0, $s1, $0 # a=b

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Instructions and Immediates

Immediates

I Numerical constants are called immediates
I Separate instruction synstax for immediates

opi dst, src, imm

I Operation names end with ’i’, replace second source register
with an immediate

I Example uses:
I addi $s0, $s1, 5 # a=b+5
I addi $s2, $s2, 1 # c++

I Why no subi instruction?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Five Components of a Computer
I Data transfer instructions move data between registers

(datapath) and memory
I Allows us to fetch and store operands in memory

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Data Transfer

I C variables (can) map onto registers; What about large data
structures like arrays?

I Use memory! But how?
I MIPS instructions only operate on registers

I Specialized data transfer instructions move data between
registers and memory

I Store: register TO memory
I Load: register FROM memory

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Data Transfer

I C variables (can) map onto registers; What about large data
structures like arrays?

I Use memory! But how?
I MIPS instructions only operate on registers
I Specialized data transfer instructions move data between

registers and memory
I Store: register TO memory
I Load: register FROM memory

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Data Transfer

I Instruction syntax for data transfer:
op reg, offset(base_addr)

I op = operation name (“operator”)
I reg = register for operation source or destination
I base_addr = register with pointer to memory (“base

address”)
I offset = address offset (immediate) in bytes (“offset”)

I Accesses memory at address base_addr + offset
I Reminder: A register holds a word of raw data (no type) –

be sure to use registers and offsets that point to valid memory
addresses

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Memory is Byte-Addressed

I What was the smallest data type in C?

I A char, which was a byte (8 bits)
I Everything in multiples of 8 bits (e.g. 1 word = 4 bytes)

I Memory addresses are indexed by bytes, not words
I Word addresses are 4 bytes apart

I Word addr is the same as left-most byte
I Addrs must be multiples of 4 to be word-aligned

I Pointer arithmetic not done for you in assembly
I Must take data size into account manually

... 0 1 2 3 4 5 6 7 8 9 10 11 12 ...

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Memory is Byte-Addressed

I What was the smallest data type in C?
I A char, which was a byte (8 bits)
I Everything in multiples of 8 bits (e.g. 1 word = 4 bytes)

I Memory addresses are indexed by bytes, not words
I Word addresses are 4 bytes apart

I Word addr is the same as left-most byte
I Addrs must be multiples of 4 to be word-aligned

I Pointer arithmetic not done for you in assembly
I Must take data size into account manually

... 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Data Transfer Instructions

I Load Word (lw)
I Takes data at address base_addr + offset FROM memory

and places it into a register
I Store Word (sw)

I Takes data in register and stores it TO memory at address
base_addr + offset

I Example Usage:
addr of int B[] -> $s3, a -> $s0
lw $t0,12($s3) # $t0=B[3]
add $t0,$s0,$t0 # $t0=B[3]+a
sw $t0,40($s3) # B[10]=B[3]+a

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Registers vs. Memory

I What if more variables than registers?
I Keep most frequently used in registers and move the rest to

memory (called spilling to memory)
I Why not all variables in memory?

I Smaller is faster: registers 100-500 times faster
I Registers are more versatile

I In 1 arithmetic instruction: read 2 operands, perform 1
operation, 1 write

I In 1 data transfer instruction: 1 read/write, no operation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Great Idea #3: Principle of Locality/Memory Hierarchy

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Question: Which of the following is TRUE?

(blue) add $t0,$t1,4($t2) is valid MIPS
(green) We can address 8 GiB with MIPS 32-bit words
(purple) offset must be a multiple of 4 for
lw $t0, offset($s0) to be valid
(yellow) If MIPS halved the number of registers available, code
would NOT be twice as fast

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Question: Which of the following is TRUE?

(blue) add $t0,$t1,4($t2) is valid MIPS
(green) We can address 8 GiB with MIPS 32-bit words
(purple) offset must be a multiple of 4 for
lw $t0, offset($s0) to be valid
(yellow) If MIPS halved the number of registers available, code

would NOT be twice as fast

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Chars and Strings

I Recall: A string is just an array of characters and a char in C
uses 8-bit ASCII

I How to retrieve from memory?

I Method 1: Move words in and out of memory using
bit-masking and shifting
lw $s0, 0($s1)
andi $s0, $s0, 0xFF # lowest byte

I Method 2: Load/store byte instructions
lb $s0, 0($s1)
sb $s0, 1($s1) # Addr != 0 (mod 4), but OK

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Chars and Strings

I Recall: A string is just an array of characters and a char in C
uses 8-bit ASCII

I How to retrieve from memory?
I Method 1: Move words in and out of memory using

bit-masking and shifting
lw $s0, 0($s1)
andi $s0, $s0, 0xFF # lowest byte

I Method 2: Load/store byte instructions
lb $s0, 0($s1)
sb $s0, 1($s1) # Addr != 0 (mod 4), but OK

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Chars and Strings

I Recall: A string is just an array of characters and a char in C
uses 8-bit ASCII

I How to retrieve from memory?
I Method 1: Move words in and out of memory using

bit-masking and shifting
lw $s0, 0($s1)
andi $s0, $s0, 0xFF # lowest byte

I Method 2: Load/store byte instructions
lb $s0, 0($s1)
sb $s0, 1($s1) # Addr != 0 (mod 4), but OK

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Byte Instructions

I lb/sb utilize the least significant byte of the register
I On sb, upper 24 bits are ignored
I On lb, upper 24 bits are filled via sign extension

I For example, let 0($s0) = 0x00000180:
lb $s1,1($s0) # $s1=0x00000001
lb $s2,0($s0) # $s2=0xFFFFFF80
sb $s2,2($s0) # 0($s0)=0x00800180

I Normally you don’t want to sign extend chars
I Use lbu (load byte unsigned) instead

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Endianness
I Big Endian: Most-significant byte at least address of word

I word address = address of most significant byte
I Little Endian: Least-significant byte at least address of word

I word address = address of least significant byte

msb
3

0

2

1

1

2

0

3
lsb

little endian

big endian

I MIPS is bi-endian (can be implemented either way)
I Using MARS simulator in lab, which is little endian

I Why is this confusing?
I Data stored in reverse order that you write it out
I 0x01020304 stored as 04 03 02 01

I BUT, it’s natural from a programming perspective
I Moving to a larger address moves you to a more significant

(“larger”) byte.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Data Transfer Instructions

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

Computer Decision Making

I In C, we had control flow
I Outcomes of comparative/logical statements determine which

blocks of code to execute
I In MIPS, we cannot define blocks of code; all we have are

labels
I Defined by text followed by a colon (e.g. main:) and refers to

the instruction that follows
I Generate control flow by jumping to labels
I C has these too, but they are considered bad style

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

Decision Making Instructions

I Branch If Equal (beq)
I beq src1, src2, label
I If the contents of src1 equal the contents of src2, then go to

label
I Branch If Not Equal (bne)

I bne src1, src2, label
I If the contents of src1 does NOT equal the contents of src2,

then go to label
I Jump (j)

I j label
I jump to label no matter what

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

Translating an If-Else

In C:

if (i == j)
a = b; /* then */

else
a = -b; /* else */

In English:
I if TRUE, execute the “then”

block
I if FALSE, execute the “else”

block

MIPS (beq):

i->$s0, j->$s1
a->$s2, b->$s3

beq $s0, $s1, then
else:#do not technically need this

sub $s2, $0, $s3
j end

then:
add $s2, $s3, $0

end:

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

Loops in MIPS

I There are three types of loops in C:
I while, do...while, and for
I Each can be rewritten as either of the other two

I You will examine how to write loops in MIPS in discussion
I do-while loop now, if time

I Key Concept: Although there are many ways to write a loop
in MIPS, the key to implementing control flow is the
conditional branch

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

Question: Which of the following is FALSE? (Extra practice, try
writing out the TRUE statement)
(blue) We can make an unconditional branch from a conditional
branch instruction
(green) We can make a while-loop with just j (no beq or bne)
(purple) We can make a for-loop without using j
(yellow) An if-else clause written with beq can be written in the
same number of lines with bne

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

Question: Which of the following is FALSE? (Extra practice, try
writing out the TRUE statement)
(blue) We can make an unconditional branch from a conditional
branch instruction

(green) We can make a while-loop with just j (no beq or bne)
(purple) We can make a for-loop without using j
(yellow) An if-else clause written with beq can be written in the
same number of lines with bne

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

MIPS Green Sheet

I Contains MIPS instructions and lots of other useful
information

I http://inst.eecs.berkeley.edu/˜cs61c/resources/
MIPS_Green_Sheet.pdf

I Hard copy in textbook (will be provided on exams)
I Inspired by the IBM 360 “Green Card” from the late 1960’s

and 1970’s
I http://en.wikipedia.org/wiki/Green_card_(IBM/360)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf
http://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf
http://en.wikipedia.org/wiki/Green_card_(IBM/360)

Assembly I Administrivia Assembly II Bonus Material

Decision Instructions

And in Conclusion

I Computers understand the instructions of their ISA
I RISC Design Principles

I Smaller is faster, keep it simple
I MIPS Registers: $s0-$s7, $t0-$t9, $0
I MIPS Instructions

I Arithmetic: add, sub, addi
I Data transfer: lw, sw, lb, sb, lbu
I Branching: beq, bne, j

I Memory is byte-addressed

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Outline
Assembly I

What is machine language
Registers

Administrivia

Assembly II
Instructions and Immediates
Data Transfer Instructions
Decision Instructions

Bonus Material
C to MIPS
Additional Instructions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Bonus Slides

We will likely not have time to cover these slides in lecture, but
you are still responsible for the material presented within them.
They have been put together in such a way as to be easily readable
even without a live lecturer presenting them.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

C to MIPS

C to MIPS Practice

I Let’s put all of our new MIPS knowledge to use in an
example: “Fast String Copy”

I C code is as follows:

/* Copy string from p to q. */
char *p, *q;
while (*q++ = *p++);

I What do we know about its structure?
I Single while loop
I Exit condition is an equality test

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

C to MIPS

C to MIPS Practice

I Start with code skeleton:
copy string p to q
p->$s0, q->$s1 (pointers)

Loop:

j Loop

$t0 = *p
*q = $t0
p = p + 1
q = q + 1
if *p == 0, go to Exit
go to loop

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

C to MIPS

C to MIPS Practice

I Fill in code according to comments:
copy string p to q
p->$s0, q->$s1 (pointers)

Loop: lb $t0, 0($s0)
sb $t0, 0($s1)
addi $s0, $s0, 1
addi $s1, $s1, 1
beq $t0, $0, Exit
j Loop

Exit:

$t0 = *p
*q = $t0
p = p + 1
q = q + 1
if *p == 0, go to Exit
go to loop

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

C to MIPS

C to MIPS Practice

I Finished code:
copy string p to q
p->$s0, q->$s1 (pointers)

Loop: lb $t0, 0($s0)
sb $t0, 0($s1)
addi $s0, $s0, 1
addi $s1, $s1, 1
beq $t0, $0, Exit
j Loop

Exit: #N chars in p => N*6 instructions

$t0 = *p
*q = $t0
p = p + 1
q = q + 1
if *p == 0, go to Exit
go to loop

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

C to MIPS

C to MIPS Practice

I Alternate code using bne:
copy string p to q
p->$s0, q->$s1 (pointers)

Loop: lb $t0, 0($s0)
sb $t0, 0($s1)
addi $s0, $s0, 1
addi $s1, $s1, 1
bne $t0, $0, Loop

#N chars in p => N*6 instructions

$t0 = *p
*q = $t0
p = p + 1
q = q + 1
if *p == 0, go to Exit
go to loop

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

MIPS Arithmetic Instructions

I The following commands place results in the special registers
HI and LO

I Access these values with “move from HI”
(mfhi dst) and “move from LO” (mflo dst)

I Multiplication (mult)
I mult src1, src2
I src1 * src2: lower 32-bits in LO, upper 32-bits in HI

I Division (div)
I div src1, src2
I src1 / src2: puts quotient in LO, remainder in HI

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

MIPS Arithmetic Instructions

I Example:
mod using div: $s2 = $s0 mod $s1
mod:

div $s0, $s1 # LO = $s0 / $s1
mfhi $s2 # HI = $s0 mod $s1

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Arithmetic Overflow

I Recall: Overflow occurs when there is a “mistake” in
arithmetic due to the limitied precision in computers

I i.e. not enough bits to represent answer
I MIPS detects overflow (throws errors)

I Arithmetic unsigned instructions ignore overflow

Detects Overflow Ignores Overflow
add dst, src1, src2 addu dst, src1, src2
addi dst, src1, imm addiu dst, src1, imm
sub dst, src1, src2 subu dst, src1, src2

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Arithmetic Overflow

I Example (Recall that 0x80000000 is the most negative
number):
$s0=0x80000000, $s1=0x1
add $t0,$s0,$s0 # overflow (error)
addu $t1,$s0,$s0 # $t1 = 0
addi $t2,$s0,-1 # overflow (error)
addiu $t2,$s0,-1 # $t3=0x7FFFFFFF
sub $t4,$s0,$s1 # overflow (error)
subu $t5,$s0,$s1 # $t5=0x7FFFFFFF

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

MIPS Bitwise Instructions

Note: a → $s1, b → $s2, c → $s3
Instruction C MIPS
And a = b & c and $s1,$s2,$s3
And Immediate a = b & 0x1 andi $s1,$s2,0x1
Or a = b | c or $s1,$s2,$s3
Or Immediate a = b | 0x5 ori $s1,$s2,0x5
Not Or a = ˜(b | c) not $s1,$s2,$s3
Exclusive Or a = b ˆ c xor $s1,$s2,$s3
Exclusive Or Immediate a = b ˆ 0xF xori $s1,$s2,0xF

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Shifting Instructions

I In binary, shifting an unsigned number to the left is the same
as multiplying by the corresponding power of 2

I Shifting operations are faster
I Does not (quite) work with shifting right/division

I Logical Shift: Add zeros as you shift
I Arithmetic Shift: Sign extend as you shift

I Only applies when you shift right (preserves sign)
I Can shift by immediate or value in a register

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Shifting Instructions

Instruction Name MIPS
Shift Left Logical sll $s1,$s2,1
Shift Left Logical Variable sllv $s1,$s2,$s3
Shift Right Logical srl $s1,$s2,2
Shift Right Logical Variable srlv $s1,$s2,$s3
Shift Right Arithmetic sra $s1,$s2,3
Shift Right Arithmetic Variable srav $s1,$s2,$s3

I When using immediate, only values 0-31 are accepted
I When using variable, only 5 least significant bits are used (read as

unsigned)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Shifting Instructions

sample calls to shift instructions
addi $t0, $0, -256 # $t0=0xFFFFFF00
sll $s0, $t0, 3 # $s0=0xFFFFF800
srl $s1, $t0, 8 # $s1=0x00FFFFFF
sra $s2, $t0, 8 # $s2=0xFFFFFFFF

addi $t1, $0, -22 # $t1=0xFFFFFFEA
low 5: 0b01010

sllv $s3, $t0, $t1 # $s3=0xFFFC0000
same as sll $s3, $t0, 10

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Shifting Instructions

I Another Example:
lb using lw: lb $s1, 1($s0)
lw $s1, 0($s0) # get word
andi $s1, $s1, 0xFF00 # get 2nd byte
srl $s1, $s1, 8 # shift into lowest

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Shifting Instructions

I Yet Another Example:
sb using sw: sb $s1, 3($s0)
lw $t0, 0($s0) # get current word
andi $t0, $t0, 0xFFFFFF # zero top byte
sll $t1, $s1, 24 # shift into highest
or $t0, $t0, $t1 # combine
sw $t0, 0($s0) # store back

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Assembly I Administrivia Assembly II Bonus Material

Additional Instructions

Shifting Instructions

I Extra for Experience:
I Rewrite the two preceding examples to be more general
I Assume that the byte offset (e.g. 1 and 3 in the examples) is

contained in $s2
I Hint:

I The variable shift instructiosn will come in handy
I Remember, the offset can be negative

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

