
Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

CS 61c: Great Ideas in Computer Architecture
Memory Management in C

Instructor: Alan Christopher

June 26, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Review

I Arrays
I Can traverse using pointer or array syntax
I Use null-terminated char[] for strings

I Pointer arithmetic moves the pointer by the size of the thing
it’s pointing to

I No need for the programmer to worry about it

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Compiler

Assembler

Machine Interpretation

Architecture Implementation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Outline
Memory Layout

In C
Stack Mem
Static and Code Data

Administrivia

Dynamic Memory Allocation
Heap
Common Problems
Memory Management

C Wrap-up
Linked List Example

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

In C

Memory Layout
I Program’s address space

contains 4 regions:
I Stack: local variables,

grows downward
I Heap: Space requested via

malloc(), grows upward
I Static Data: Global and

static variables. Does not
change size.

I Code: Loaded when
program starts, does not
change

I OS responsible for detecting
accesses to unallocated region.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

In C

Which variables go where

I Static:
I Declared outside a

function
I Stack:

I Declared inside a function
I note: main() is a

function
I Freed on function return

I Heap:
I Dynamically allocated

(e.g. with malloc())

include <stdio.h>

int varGlobal;

int main () {
int varLocal;
int *varDyn =

malloc(sizeof(int));
}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

The Stack

I Each stack frame is a contiguous block
of memory holding the local variables of
a single procedure

I A stack frame includes:
I Location of caller function
I Function arguments
I Space for local variables

I Stack pointer (SP) tells where the
lowest (current) stack frame is

I When a function returns its stack frame
is thrown out, freeing memory for future
function calls

Memory:
frame

frame

frame
SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B

SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B

SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B
SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B

C
SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B
SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B

D
SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B
SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B

SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

An Example
I Last in, First out (LIFO) data structure

int main() {
a(0);
return 1;

}

void a(int m) {
b(1);

}

void b(int n) {
c(2);
d(4);

}

void c(int o) {
printf("c");

}

void d(int p) {
printf("d");

}

The Stack:

MAIN

A

B

SP

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Stack Mem

Stack Misuse
I Never return pointers to locally allocated memory, e.g.

int * getPtr () {
int y = 3;
return &y;

}

I Compiler will warn you if you do this, don’t ignore it
I Things can get really wonky if you do this (Boardwork):

int main () {
int *stackAddr , content ;
stackAddr = getPtr ();
content = * stackAddr ;
printf ("%d", content \n); /* 3 */
content = * stackAddr ;
printf ("%d", content \n); /* -1216751336 */

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Static and Code Data

Static and Code

Static:
I Place for variables that persist

I Good for data that never expands, shrinks, or goes stale
I E.g. String literals, global variables

I Size is constant, but contents can be modified
Code:

I Where the executable data is stored
I We can represent anything with bits, including programs.

More on how to do that later
I Does not change size
I Contents usually not allowed to be modified

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Static and Code Data

Question: Which statement below is FALSE? All statements
assume that each variable exists.

void funcA (){ int x; printf ("A");}
void funcB () {

int y;
printf ("B");
funcA ();

}
void main () {char *s = "s"; funcB ();}

(blue) x is at a lower address than y
(green) x and y are in adjacent stack frames
(purple) x is at a lower address than *s
(yellow) y is in the 2nd frame from the top of the Stack

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Static and Code Data

Question: Which statement below is FALSE? All statements
assume that each variable exists.

void funcA (){ int x; printf ("A");}
void funcB () {

int y;
printf ("B");
funcA ();

}
void main () {char *s = "s"; funcB ();}

(blue) x is at a lower address than y
(green) x and y are in adjacent stack frames
(purple) x is at a lower address than *s

(yellow) y is in the 2nd frame from the top of the Stack

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Outline
Memory Layout

In C
Stack Mem
Static and Code Data

Administrivia

Dynamic Memory Allocation
Heap
Common Problems
Memory Management

C Wrap-up
Linked List Example

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Administrivia

I HW1 still due Sunday
I Project 1 released

I Start early!
I Start early!
I Did I mention to start early? You should start early.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Outline
Memory Layout

In C
Stack Mem
Static and Code Data

Administrivia

Dynamic Memory Allocation
Heap
Common Problems
Memory Management

C Wrap-up
Linked List Example

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Dynamic Memory Allocation

I Sometimes you don’t know how much memory you need
beforehand

I e.g. input files, user input
I Dynamically allocated memory goes on the heap – more

permanent than the stack
I Needs as much space as possible without interfering with the

stack
I this is why we start the stack at the top of memory, and the

heap towards the bottom

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Allocating Memory

I Three functions for requisition memory: malloc(),
calloc(), realloc()

I malloc(n)
I Allocates a contiguous block of n BYTES of uninitialized

memory.
I Returns a pointer to the beginning of the allocated block;

NULL if the request failed.
I Different blocks not necessarily adjacent

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Using malloc

I Almost always used for arrays or structs
I Good practice to use sizeof when allocating

int *p = malloc (n * sizeof (int));

I Without the sizeof your code won’t be very portable at all.

I Can use array or pointer syntax to access
I DON’T lose the original address

I p++ is a terrible idea if p was malloc()’d

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Releasing Memory

I Release memory on the heap using free()
I Memory is limited, should free when finished with it

I free(p)
I Releases the whole block that p pointed to
I p must point to the base of a malloc()’d block
I Illegal to call free() on a block more than once

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Dynamic Memory Example
I Need #include <stdlib.h>

typedef struct {
int x;
int y;

} point;
point *rect; /* 2 opposite corners = rectangle */
...
rect = malloc (2* sizeof (point));
/* Check malloc */
if (! rect) {

printf ("Out of memory !\n");
exit (1);

}

/* Do NOT change rect in this region */
...
...
free(rect);

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Question: We want the output a[] = {0,1,2} with no errors.
Which lines do we need to change?

1 # define N 3
2 int * makeArray (int n) {
3 int *arr;
4 ar = (int *) malloc (n);
5 return arr;
6 }
7 int main () {
8 int i, *a = makeArray (N);
9 for (i=0; i<N; i++)

10 *a++ = i;
11 printf ("a[] = {%d,%d,%d}",a[0],a[1],a[2]);
12 free(a);
13 }

(blue) 4, 12
(green) 5, 12
(purple) 4,10
(yellow) 5, 10

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Heap

Question: We want the output a[] = {0,1,2} with no errors.
Which lines do we need to change?

1 # define N 3
2 int * makeArray (int n) {
3 int *arr;
4 ar = (int *) malloc (n);
5 return arr;
6 }
7 int main () {
8 int i, *a = makeArray (N);
9 for (i=0; i<N; i++)

10 *a++ = i;
11 printf ("a[] = {%d,%d,%d}",a[0],a[1],a[2]);
12 free(a);
13 }

(blue) 4, 12
(green) 5, 12
(purple) 4,10

(yellow) 5, 10

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Know Your Memory Errors1

I Segmentation Fault (more common in 61c)
“An error in which a running Unix program attempts to access
memory not allocated to it and terminates with a
segmentation violation error and usually a core dump”

I Bus error (less common in 61c)
“A fatal failure in the execution of a machine language
instruction resulting from the processor detecting an
anomalous condition on its bus. Such conditions include
invalid address alignment (accessing a multi-byte number at
an odd address), accessing a physical address that does not
correspond to any device, or some other device-specific
hardware error.”

1Definitions from http://www.hyperdictionary.com
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://www.hyperdictionary.com

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Common Problems

I Using uninitialized values
I Using memory that you don’t own

I Using NULL or garbage data as a pointer
I De-allocated stack or heap variable
I Out of bounds reference to stack or heap array

I Using memory you haven’t allocated
I Freeing invalid memory
I Memory leaks

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Using Uninitialized Values
I What is wrong with this code?

void foo(int *p) {
int j;
*p = j;

}

void bar () {
int i = 10;
foo (&i);
printf ("i = %d\n", i);

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Using Uninitialized Values
I What is wrong with this code?

void foo(int *p) {
int j;
*p = j; // j is garbage

}

void bar () {
int i = 10;
foo (&i); // i now contains garbage
printf ("i = %d\n", i); // printing garbage

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Don’t Own I

I What is wrong with this code?

typedef struct node {
struct node *next;
int val;

} node;

int findLastNodeValue (node *head) {
while (head ->next)

head = head ->next;
return head ->val;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Don’t Own I
I What is wrong with this code?

typedef struct node {
struct node *next;
int val;

} node;

// What if head is NULL?
int findLastNodeValue (node *head) {

// Segfault here!
while (head ->next)

head = head ->next;
return head ->val;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Don’t Own II

I What is wrong with this code?

char * append (const char *s1 , const char *s2) {
const int MAXSIZE = 128;
char result [MAXSIZE];
int i = 0, j = 0;
for (j=0; i<MAXSIZE -1 && j< strlen (s1); i++,j++)

result [i] = s1[j];
for (j=0; i<MAXSIZE -1 && j< strlen (s2); i++,j++)

result [i] = s2[j];
result [i] = ’\0’;
return result ;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Don’t Own II

I What is wrong with this code?

char * append (const char *s1 , const char *s2) {
const int MAXSIZE = 128;
char result [MAXSIZE]; // local array is on stack
int i = 0, j = 0;
for (j=0; i<MAXSIZE -1 && j< strlen (s1); i++,j++)

result [i] = s1[j];
for (j=0; i<MAXSIZE -1 && j< strlen (s2); i++,j++)

result [i] = s2[j];
result [i] = ’\0’;
// return value no longer valid after we return !
return result ;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Don’t Own III

I What is wrong with this code?

typedef struct {
char *name;
int age;

} profile ;

profile * person = malloc (sizeof (profile));
char *name = getName ();
person ->name = malloc (sizeof (char) * strlen (name));
strcpy (person ->name , name);
... /* Do non -buggy stuff */
free(person);
free(person ->name);

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Don’t Own III
I What is wrong with this code?

typedef struct {
char *name;
int age;

} profile ;

profile * person = malloc (sizeof (profile));
char *name = getName ();
// No space for the null terminator
person ->name = malloc (sizeof (char) * strlen (name));
strcpy (person ->name , name);
...
free(person);
// Oops , person was just deallocated , should
// have done this first
free(person ->name);

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Haven’t Allocated I

I What is wrong with this code?

void str_manip () {
const char *name = " Safety Critical ";
char *str = malloc (10);
strncpy (str , name , 10);
str [10] = ’\0’;
printf ("%s\n", str);

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Haven’t Allocated I

I What is wrong with this code?

void str_manip () {
const char *name = " Safety Critical ";
char *str = malloc (10);
strncpy (str , name , 10);
str [10] = ’\0’; // Out of bounds write
printf ("%s\n", str); // Out of bounds read

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Haven’t Allocated II

I What is wrong with this code?

char buffer [1024];
int main(int argc , char *argv []) {

strcpy (buffer , argv [1]);
...

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory You Haven’t Allocated II

I What is wrong with this code?

char buffer [1024];
int main(int argc , char *argv []) {

// What if strlen (argv [1]) > 1023?
strcpy (buffer , argv [1]);
...

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Freeing Invalid Memory

I What is wrong with this code?

void free_memX () {
int fnh = 0;
free (& fnh);

}

void free_memY () {
int *fum = malloc (4 * sizeof (int));
free(fum + 1);
free(fum);
free(fum);

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Freeing Invalid Memory

I What is wrong with this code?

void free_memX () {
int fnh = 0;
free (& fnh); // Not heap allocated

}

void free_memY () {
int *fum = malloc (4 * sizeof (int));
free(fum + 1); // Does not point to start of block
free(fum);
free(fum); // Double -free

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory Leaks I

I What is wrong with this code?

int *pi;
void foo () {

pi = malloc (8 * sizeof (int));
...
free(pi);

}

void main () {
pi = malloc (4* sizeof (int));
foo ();

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Memory Leaks I
I What is wrong with this code?

int *pi;
void foo () {

// Overwrites old pointer
// 4* sizeof (int) bytes from main leaked
pi = malloc (8 * sizeof (int));
...
free(pi);

}

void main () {
pi = malloc (4* sizeof (int));
foo ();

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Debugging Tools
I Runtime analysis tools for finding memory errors

I Dynamic analysis tool:
collects information on
memory management
while program runs

I Doesn’t work to find
ALL memory bugs (this
is an incredibly
challenging problem),
but will detect leaks for
you

I You’ll be using valgrind in lab 4, and on your project to check
for memory leaks.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Common Problems

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Memory Management

I Many calls to malloc() and free() with many different size
blocks – where are they placed?

I Want system to be fast with minimal memory overhead
I In contrast to an automatic garbage collection system, like in

Java or Python
I Want to avoid fragmentation, the tendency of available

memory to get separated into small chunks

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Fragmentation Example

1. Block 1: malloc(100)

2. Block 2: malloc(1)

3. Block 1: free()
4. Block 3: malloc(50)

I Note, could go above B2
5. Block 4: malloc(60)

...

Heap

B1

B2 (1 byte)

B3

B4

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Fragmentation Example

1. Block 1: malloc(100)

2. Block 2: malloc(1)

3. Block 1: free()
4. Block 3: malloc(50)

I Note, could go above B2
5. Block 4: malloc(60)

...

Heap

B1

B2 (1 byte)

B3

B4

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Fragmentation Example

1. Block 1: malloc(100)

2. Block 2: malloc(1)

3. Block 1: free()

4. Block 3: malloc(50)
I Note, could go above B2

5. Block 4: malloc(60)

...

Heap

B1

B2 (1 byte)

B3

B4

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Fragmentation Example

1. Block 1: malloc(100)

2. Block 2: malloc(1)

3. Block 1: free()
4. Block 3: malloc(50)

I Note, could go above B2

5. Block 4: malloc(60)

...

Heap

B1

B2 (1 byte)

B3

B4

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Fragmentation Example

1. Block 1: malloc(100)

2. Block 2: malloc(1)

3. Block 1: free()
4. Block 3: malloc(50)

I Note, could go above B2
5. Block 4: malloc(60)

...

Heap

B1

B2 (1 byte)

B3

B4

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Basic Allocation Strategy: K&R

I Section 8.7 offers an implementation of memory managment
(linked list of free blocks)

I This is just one of many possible memory management
algorithms

I Just to give you a taste
I No single best approach for every application

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

K&R Implementation

I Each block holds its own size and a pointer to the next block
I free() adds block to the list, combines with adjacent free

blocks
I malloc() searches free list for block large enough to meet

request
I If multiple blocks fit request, which one do we use?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Choosing a Block

I Best-fit: Choose smallest block that fits request
I Tries to limit wasted fragmentation space, but takes more time

and leaves a lot of small blocks
I First-fit: Choose first block that is large enough (always

starts from the beginning)
I Fast, but tends to concentrate small blocks at the beginning

I Next-fit: Like first-fit, but resume search from where we last
left off

I Fast, and does not concentrate small blocks at front

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Question: Which allocation system and set of requests will create
a contiguous allocated region in the Heap? B3 was the last fulfilled
request.

(blue) Best-fit:malloc(50), malloc(50)
(green) First-fit:malloc(50), malloc(30)
(purple) Next-fit:malloc(30), malloc(50)
(yellow) Next-fit:malloc(50), malloc(30)

50

10 B2
30
10 B3

50

50 B1

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Memory Management

Question: Which allocation system and set of requests will create
a contiguous allocated region in the Heap? B3 was the last fulfilled
request.

(blue) Best-fit:malloc(50), malloc(50)
(green) First-fit:malloc(50), malloc(30)

(purple) Next-fit:malloc(30), malloc(50)
(yellow) Next-fit:malloc(50), malloc(30)

50

10 B2
30
10 B3

50

50 B1

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Outline
Memory Layout

In C
Stack Mem
Static and Code Data

Administrivia

Dynamic Memory Allocation
Heap
Common Problems
Memory Management

C Wrap-up
Linked List Example

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Linked List Example

I We want to generate a linked list of strings
I This example uses structs, pointers, malloc(), and free()

I First, we’ll need a structure for list nodes

typedef struct node {
char *value;
struct node *next;

} node;

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Adding a node to the list

char *s1 = "start", *s2 = " middle ";
char *s3 = "end";
node *list = NULL;

/* Creates the list {" start , " middle ", "end "} */
list = prepend (s3 , list);
list = prepend (s2 , list);
list = prepend (s1 , list);

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Adding a node ot the list

I Let’s examine the 3rd call ("start"):

node * prepend (char *s, node *lst) {
node *node = malloc (sizeof (node));
node ->value = malloc (strlen (s) + 1);
strcpy (node ->value , s);
node ->next = lst;
return node;

}

I Boardwork!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Adding a node ot the list

I Let’s examine the 3rd call ("start"):

node * prepend (char *s, node *lst) {
node *node = malloc (sizeof (node));
node ->value = malloc (strlen (s) + 1);
strcpy (node ->value , s);
node ->next = lst;
return node;

}

I Boardwork!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Removing a node

I Now let’s remove "start" from the list:

node * del_front (node *lst) {
node *tmp = lst ->next;
free(lst ->value);
free(lst);
return tmp;

}

I Boardwork!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Removing a node

I Now let’s remove "start" from the list:

node * del_front (node *lst) {
node *tmp = lst ->next;
free(lst ->value);
free(lst);
return tmp;

}

I Boardwork!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Additional Functionality

I How might you implement the following (left as exercises to
the reader):

I Append node to end of a list
I Delete/free an entire list
I Join two lists together
I Sort a list

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Memory Layout Administrivia Dynamic Memory Allocation C Wrap-up

Linked List Example

Summary

I C memory layout
I Static Data: globals and string literals
I Code: copy of machine code
I Stack: local variables
I Heap: dynamic storage via malloc() and free()

I Memory management
I Want fast, with minimal fragmentation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

	Memory Layout
	In C
	Stack Mem
	Static and Code Data

	Administrivia
	Dynamic Memory Allocation
	Heap
	Common Problems
	Memory Management

	C Wrap-up
	Linked List Example

