
Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

CS 61c: Great Ideas in Computer Architecture
Arrays, Strings, and Some More Pointers

Instructor: Alan Christopher

June 24, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Review of Last Lecture

I C Basics
I Variables, functioss, control flow, types, structs
I Only 0 and NULL evaluate to false

I Pointers hold addresses
I Address vs. Value
I Allows for efficient and powerful code, but error prone

I C functions are “pass by value”
I Passing pointers circumvents this

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Question: What is the result of executing the following code?

include <stdio.h>
int main () {

int *p;
*p = 5;
printf ("%d\n", *p);

}

(blue) Prints 5
(green) Prints garbage
(purple) Guaranteed to crash
(yellow) Probably crashes

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Question: What is the result of executing the following code?

include <stdio.h>
int main () {

int *p;
*p = 5;
printf ("%d\n", *p);

}

(blue) Prints 5
(green) Prints garbage
(purple) Guaranteed to crash
(yellow) Probably crashes

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Compiler

Assembler

Machine Interpretation

Architecture Implementation

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Outline
Miscellaneous C Syntax

C quirks

Arrays
Basics
Relation to Pointers

Administrivia

Strings
Working with Strings

More Pointers
Pointer Arithmetic
Pointer Miscellaneous

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Expansion on Struct Declarations
I Structure definition:

I Does NOT declare a variable
I Variable type is “struct name”

struct name bob, *pn, name_arr[3];

struct name {
/* fields */

};

I Joint struct definition and typedef possible

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

typedef struct nm {
/* fields */

} name;
name n1;

Equiv.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Assignment and Equality

I One of the most common errors for beginning C programmers
(a = b) is an assignment
(a == b) is an equality test

I Comparisons will use assigned values
I Assignments return the value assigned
I if (a = b) { ... } is legal, but probably not what you

meant
I A trick for avoiding this mistake

I Put the constant on the left when comparing
if (3 == a) { ... } ← Correct
if (3 = a) { ... } ← Compilation Error

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Operator Precedence
Operators Associativity
() [] -> . left to right
! ˜ ++ -- + - * (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
ˆ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= %= &= ˆ= |= <<= >>= right to left
, left to right

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Operator Precedence

For precedence/order of execution, see table 2-1 on p. 53 of K&R
I Use parentheses to manipulate
I Equality test (==) binds more tightly than logic (&, |, &&, ||)

I x & 1 == 0 means x & (1 == 0), rather than
(x & 1) == 0

I Pre-increment (++p) takes effect first
I Post-increment (p++) takes effect last

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Increment and Dereference

I Dereference operator (*) and (in/de)crement operators are
the same level of precedence and are applied from right to left
*p++ returns *p, then increments p

I ++ binds to p before *, but takes effect last

*--p decrements p, returns whatever is at that address
I -- binds to p before *, and takes effect first

++*p increments *p, then returns that value
I * binds to ++ before *

(*p)++ returns *p, then increments in memory
I * binds to p before ++, and takes effect first

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Increment and Dereference

I Dereference operator (*) and (in/de)crement operators are
the same level of precedence and are applied from right to left
*p++ returns *p, then increments p

I ++ binds to p before *, but takes effect last
*--p decrements p, returns whatever is at that address

I -- binds to p before *, and takes effect first

++*p increments *p, then returns that value
I * binds to ++ before *

(*p)++ returns *p, then increments in memory
I * binds to p before ++, and takes effect first

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Increment and Dereference

I Dereference operator (*) and (in/de)crement operators are
the same level of precedence and are applied from right to left
*p++ returns *p, then increments p

I ++ binds to p before *, but takes effect last
*--p decrements p, returns whatever is at that address

I -- binds to p before *, and takes effect first
++*p increments *p, then returns that value

I * binds to ++ before *

(*p)++ returns *p, then increments in memory
I * binds to p before ++, and takes effect first

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Increment and Dereference

I Dereference operator (*) and (in/de)crement operators are
the same level of precedence and are applied from right to left
*p++ returns *p, then increments p

I ++ binds to p before *, but takes effect last
*--p decrements p, returns whatever is at that address

I -- binds to p before *, and takes effect first
++*p increments *p, then returns that value

I * binds to ++ before *
(*p)++ returns *p, then increments in memory

I * binds to p before ++, and takes effect first

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Question: What is the output of the following code?

char blocks [] = {’6’,’1’,’c’};
char *ptr = blocks , temp;
temp = *++ ptr;
printf ("1: %c\n", tmp);
temp = *ptr ++;
printf ("2: %c\n", tmp);

1 2
blue 7 8

green 7 1
purple 1 1
yellow 1 C

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

C quirks

Question: What is the output of the following code?

char blocks [] = {’6’,’1’,’c’};
char *ptr = blocks , temp;
temp = *++ ptr;
printf ("1: %c\n", tmp);
temp = *ptr ++;
printf ("2: %c\n", tmp);

1 2
blue 7 8

green 7 1
purple 1 1
yellow 1 C

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Outline
Miscellaneous C Syntax

C quirks

Arrays
Basics
Relation to Pointers

Administrivia

Strings
Working with Strings

More Pointers
Pointer Arithmetic
Pointer Miscellaneous

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Basics

Array Syntax

I Declaration:
int ar[2]; declares a 2-element array of integers
int ar[] = {795, 635}; declares and initialized a
2-element integer array

I Accessing elements:
ar[num] returns the num-th element of ar

I Zero-indexed

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Basics

Array Pitfalls

I Pitfall: An array in C does not know its own length, and its
bounds are not checked!

I We can accidentally access elements past the end of an array
I Not even guaranteed to fail when that happens!

I We must pass the array and its size (or use sentinel values,
more on that later) to any procedure manipulating it.

I Mistakes with array bounds manifest as segmentation faults
and bus errors

I Very difficult to find, best to be careful when coding to avoid
them as much as possible.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Basics

Accessing Arrays

I Array size n: can access entries in the range [0,n-1]
I Use a variable or constant for declaration of length

/* Blegh , magic numbers ! */
int i, arr[10];
for (i = 0; i < 10; i ++) { ... }

/* Single source of truth. Much better . */
int ARRAY_SIZE = 10;
int i, arr[ARRAY_SIZE];
for (i = 0; i < ARRAY_SIZE ; i ++) { ... }

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Basics

Accessing Arrays

I Array size n: can access entries in the range [0,n-1]
I Use a variable or constant for declaration of length

/* Blegh , magic numbers ! */
int i, arr[10];
for (i = 0; i < 10; i ++) { ... }

/* Single source of truth. Much better . */
int ARRAY_SIZE = 10;
int i, arr[ARRAY_SIZE];
for (i = 0; i < ARRAY_SIZE ; i ++) { ... }

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays and Pointers

I Arrays are (almost) identical to pointers
I char *string and char string[] are nearly identical

declarations
I Differ in subtle ways: initialization, sizeof(), etc.

I Key Concept: An array variable looks like a pointer to the
0-th element

I ar[0] same as *ar and ar[2] same as *(ar + 2)
I We can use pointer arithmetic to conveniently access arrays

I An array variable is read-only (no assignment)
I cannot use ar = anything

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Array and Pointer Example

I Remember: ar[i] is treated as *(ar + i)
I Three different ways of zeroing an array

1. for (i = 0; i < SIZE; i++) ar[i] = 0;

2. for (i = 0; i < SIZE; i++) *(ar + i) = 0;
3. for (p = ar; p < ar + SIZE; p++) *p = 0;

I These use pointer arithmetic, which we’ll cover in more detail
shortly

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Array and Pointer Example

I Remember: ar[i] is treated as *(ar + i)
I Three different ways of zeroing an array

1. for (i = 0; i < SIZE; i++) ar[i] = 0;
2. for (i = 0; i < SIZE; i++) *(ar + i) = 0;

3. for (p = ar; p < ar + SIZE; p++) *p = 0;

I These use pointer arithmetic, which we’ll cover in more detail
shortly

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Array and Pointer Example

I Remember: ar[i] is treated as *(ar + i)
I Three different ways of zeroing an array

1. for (i = 0; i < SIZE; i++) ar[i] = 0;
2. for (i = 0; i < SIZE; i++) *(ar + i) = 0;
3. for (p = ar; p < ar + SIZE; p++) *p = 0;

I These use pointer arithmetic, which we’ll cover in more detail
shortly

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Array and Pointer Example

I Remember: ar[i] is treated as *(ar + i)
I Three different ways of zeroing an array

1. for (i = 0; i < SIZE; i++) ar[i] = 0;
2. for (i = 0; i < SIZE; i++) *(ar + i) = 0;
3. for (p = ar; p < ar + SIZE; p++) *p = 0;

I These use pointer arithmetic, which we’ll cover in more detail
shortly

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays Stored Differently Than Pointers
void foo () {

int *p, a[4], x;
p = &x

*p = 1; // or p[0]
printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p);
*a = 2; // or a[0]
printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

... 0 4 8 12 16 20 24 28 32 36 40 44 48 ...
p x

a
“24”

40

12

*p:1, p:40, &p:20

*a:2, a:24, &a:24

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays Stored Differently Than Pointers
void foo () {

int *p, a[4], x;
p = &x

*p = 1; // or p[0]
printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p);
*a = 2; // or a[0]
printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

... 0 4 8 12 16 20 24 28 32 36 40 44 48 ...
p x

a
“24”

40

12

*p:1, p:40, &p:20

*a:2, a:24, &a:24

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays Stored Differently Than Pointers
void foo () {

int *p, a[4], x;
p = &x

*p = 1; // or p[0]
printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p);
*a = 2; // or a[0]
printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

... 0 4 8 12 16 20 24 28 32 36 40 44 48 ...
p x

a
“24”

40 1

2

*p:1, p:40, &p:20

*a:2, a:24, &a:24

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays Stored Differently Than Pointers
void foo () {

int *p, a[4], x;
p = &x

*p = 1; // or p[0]
printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p);
*a = 2; // or a[0]
printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

... 0 4 8 12 16 20 24 28 32 36 40 44 48 ...
p x

a
“24”

40 12

*p:1, p:40, &p:20

*a:2, a:24, &a:24

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays Stored Differently Than Pointers
void foo () {

int *p, a[4], x;
p = &x

*p = 1; // or p[0]
printf ("*p:%u, p:%u, &p:%u\n", *p, p, &p);
*a = 2; // or a[0]
printf ("*a:%u, a:%u, &a:%u\n", *a, a, &a);

}

... 0 4 8 12 16 20 24 28 32 36 40 44 48 ...
p x

a
“24”

40 12

*p:1, p:40, &p:20

*a:2, a:24, &a:24

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays and Functions
I Declared arrays only allocated while the scope is valid:

/** This function is EVIL. */
char *foo () {

char string [32]; ...;
return string ;

}

I An array is passed to a function as a pointer

int foo (int ar[], // Actually int *ar
unsigned size) {

... ar[size - 1] ...
}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays and Functions
I Array size gets lost when passed to a function
I What prints in the following code:

int foo(int array [], unsigned size) {
...
printf ("%d\n", sizeof (array));

}

int main(void) {
int a[10] , b[5];
... foo(a, 10) ...
printf ("%d\n", sizeof (a));

}

sizeof(int *)

10*sizeof(int)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays and Functions
I Array size gets lost when passed to a function
I What prints in the following code:

int foo(int array [], unsigned size) {
...
printf ("%d\n", sizeof (array));

}

int main(void) {
int a[10] , b[5];
... foo(a, 10) ...
printf ("%d\n", sizeof (a));

}

sizeof(int *)

10*sizeof(int)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Relation to Pointers

Arrays and Functions
I Array size gets lost when passed to a function
I What prints in the following code:

int foo(int array [], unsigned size) {
...
printf ("%d\n", sizeof (array));

}

int main(void) {
int a[10] , b[5];
... foo(a, 10) ...
printf ("%d\n", sizeof (a));

}

sizeof(int *)

10*sizeof(int)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Outline
Miscellaneous C Syntax

C quirks

Arrays
Basics
Relation to Pointers

Administrivia

Strings
Working with Strings

More Pointers
Pointer Arithmetic
Pointer Miscellaneous

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Administrivia

I Lab 2 tomorrow
I HW1 due this Sunday

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Outline
Miscellaneous C Syntax

C quirks

Arrays
Basics
Relation to Pointers

Administrivia

Strings
Working with Strings

More Pointers
Pointer Arithmetic
Pointer Miscellaneous

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Working with Strings

C Strings
I A string in C is just an array of characters

char string [] = "abc"; // 4 bytes needed

I How do you tell how long a string is?
I Last character is followed by a null terminator (’\0’ == 0)
I Need extra space in array for null terminator

int strlen (char s[]) {
int n = 0;
while (s[n])

n++;
return n;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Working with Strings

C String Libraries

I Accessible with #include <string.h>
I int strlen(char *string);

I Returns the length of string (excluding the null terminator)
I int strcmp(char *str1, char *str2);

I Compares str1 and str according to a lexical ordering
I 0 if str1 is identical to str2 (how different from

str1 == str2?)
I char *strcpy(char *dst, char *src);

I Copies the contents of src to the memory pointed to by dst.
Caller must ensure that dst is large enough to hold the copied
data

I Why not dst = src?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Working with Strings

String Examples
include <stdio.h>
include <string .h>
int main () {

char s1 [10] , s2 [10];
char s3 []="hello", *s4="hola";
strcpy (s1 ,"hi"); strcpy (s2 ,"hi");

}

Values of the following expressions?

1. sizeof(s1)

2. strlen(s1)

3. s1 == s2

4. strcmp(s1,s2)

5. strcmp(s1,s3)

6. strcmp(s1,s4)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Working with Strings

Question: What does this function do when called?

void foo(char *s, char *t) {
while (*s)

s++;
while (*s++ = *t++);

}

(blue) Always throws an error
(green) changes characters in string t to the next
character in the string s

(purple) Copies a string at address t to the string at
address s

(yellow) Appends the string at address t to the end
of the string at address s

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Working with Strings

Question: What does this function do when called?
void foo(char *s, char *t) {

while (*s)
s++;

while (*s++ = *t++);
}

(blue) Always throws an error
(green) changes characters in string t to the next
character in the string s
(purple) Copies a string at address t to the string at
address s
(yellow)
Appends the string at address t to the end
of the string at address s

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Outline
Miscellaneous C Syntax

C quirks

Arrays
Basics
Relation to Pointers

Administrivia

Strings
Working with Strings

More Pointers
Pointer Arithmetic
Pointer Miscellaneous

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Pointer Arithmetic

I pointer± number
I e.g. p + 1 adds 1 something to p

I Compare what happens: (assume a at address 100)
char *p; char a; int *p; int a;

p = &a;
printf("%u %u\n", p, p + 1);

100 101 100 104
Adds 1*sizeof(char) Adds 1*sizeof(int)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Pointer Arithmetic

I A pointer is just a memory address, so we can add
to/subtract from it to move through an array

I p+=1 correctly increments p by sizeof(*p)
I i.e. moves pointer to the next array element

I What about an array of large structs?
I Struct declaration tells C the size to use, so handled like basic

types

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Pointer Arithmetic

I What constitutes valid pointer arithmetic?
I Add an integer to a pointer
I Substract 2 pointers (in the same array)
I Compare pointers (<, <=, ==, !=,>, >=)
I Compare pointer to NULL

I Everything else is illegal since it makes no sense:
I Adding two pointers
I Multiplying pointers
I Subtracting a pointer from an integer

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Pointer Arithmetic to Copy Memory

I We can use pointer arithmetic to “walk” through memory:

void copy(int *from , int *to , int n) {
int i;
for (i = 0; i < n; i += 1) {

*to++ = *from ++;
}

}

I Note: we have to pass the size (n) to copy

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Question: The first printf outputs 100 5 5 10. What will the next two printfs
output?

int main(void){
int A[] = {5 ,10};
int *p = A;
printf ("%u %d %d %d\n", p, *p, A[0] , A [1]);
p = p + 1;
printf ("%u %d %d %d\n", p, *p, A[0] , A [1]);
*p = *p + 1;
printf ("%u %d %d %d\n", p, *p, A[0] , A [1]);

}

(blue) 101 10 5 10 then 101 11 5 11
(green) 104 10 5 10 then 104 11 5 11
(purple) 100 6 6 10 then 101 6 6 10
(yellow) 100 6 6 10 then 104 6 6 10

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Question: The first printf outputs 100 5 5 10. What will the next two printfs
output?

int main(void){
int A[] = {5 ,10};
int *p = A;
printf ("%u %d %d %d\n", p, *p, A[0] , A [1]);
p = p + 1;
printf ("%u %d %d %d\n", p, *p, A[0] , A [1]);
*p = *p + 1;
printf ("%u %d %d %d\n", p, *p, A[0] , A [1]);

}

(blue) 101 10 5 10 then 101 11 5 11
(green) 104 10 5 10 then 104 11 5 11

(purple) 100 6 6 10 then 101 6 6 10
(yellow) 100 6 6 10 then 104 6 6 10

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Delayed Icebreaker/Technology Break

I Here are the rules
I You say your name, your question for me, and your answer to

that question.
I Then I answer your question and the next person goes.

I Who’s first?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Arithmetic

Delayed Icebreaker/Technology Break

I Here are the rules
I You say your name, your question for me, and your answer to

that question.
I Then I answer your question and the next person goes.

I Who’s first?

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Pointers and Allocation

I When you declare a pointer (e.g. int *ptr;), it doesn’t
actually point to anything yet

I I points somewhere, but we don’t know where
I Dereferencing will usually cause an error

I Option 1: Point to something that already exists
I int *ptr, var; var = 5; ptr = &var;
I var has space implicitly allocated for it (declaration)

I Option 2: Allocate room in memory for something new to
point to (next lecture)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Pointers and Structures

Variable declarations:

struct point {
int x;
int y;
/* As close to containing

* an instance of ourself
* as is possible . */

struct point *p;
};

struct Point pt1;
struct Point pt2;
struct Point * ptaddr ;

Some Valid operations:

/* dot notation */
int h = pt1.x;
pt2.y = pt1.y;

/* arrow notation */
int h = ptaddr ->x;
int h = (* ptaddr).x;

/* struct assignment .
* Copies contents . */

pt1 = pt2;

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Handles

I A pointer to a pointer, declared as int **h (of course,
doesn’t have to be an int handle.)

I Example:

void incr_ptr (int **h) {
*h = *h + 1;

}

int A[3] = {50, 60, 70};
int *q = A;
incr_ptr (&q);
printf ("*q = %d\n", *q);

50 60 70

A q

q

*q = 60

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Handles

I A pointer to a pointer, declared as int **h (of course,
doesn’t have to be an int handle.)

I Example:

void incr_ptr (int **h) {
*h = *h + 1;

}

int A[3] = {50, 60, 70};
int *q = A;
incr_ptr (&q);
printf ("*q = %d\n", *q);

50 60 70

A qq

q

*q = 60

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Handles

I A pointer to a pointer, declared as int **h (of course,
doesn’t have to be an int handle.)

I Example:

void incr_ptr (int **h) {
*h = *h + 1;

}

int A[3] = {50, 60, 70};
int *q = A;
incr_ptr (&q);
printf ("*q = %d\n", *q);

50 60 70

A qq

*q = 60

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Handles

I A pointer to a pointer, declared as int **h (of course,
doesn’t have to be an int handle.)

I Example:

void incr_ptr (int **h) {
*h = *h + 1;

}

int A[3] = {50, 60, 70};
int *q = A;
incr_ptr (&q);
printf ("*q = %d\n", *q);

50 60 70

A qq

*q = 60

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data
(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data
(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data
(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data
(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data

(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data

(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Question: Assuming everything is properly initialized, what do the
following expressions evaluate to?
struct node {

char *name;
struct node *next;

};
struct node *ar [5];
struct node **p = ar;
... /* fill ar with initialized structs */

(blue) address
(green) data
(purple) invalid

1. &p

2. p->name

3. p[7]->next

4. *(*(p + 2))

5. *(p[0]->next)

6. (*p)->next->name

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Miscellaneous C Syntax Arrays Administrivia Strings More Pointers

Pointer Miscellaneous

Summary

I Pointers and array variables are very similar
I Can use pointer or array syntax to index into arrays

I Strings are null-terminated arrays of characters
I Pointer arithmetic moves the pointer by the size of the thing

it’s pointing to
I Pointers are the source of many bugs in C, so handle with care

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

	Miscellaneous C Syntax
	C quirks

	Arrays
	Basics
	Relation to Pointers

	Administrivia
	Strings
	Working with Strings

	More Pointers
	Pointer Arithmetic
	Pointer Miscellaneous

