
Basic C Administrivia C Syntax and Control Flow Pointers Summary

CS 61c: Great Ideas in Computer Architecture
Introduction to C, Pointers

Instructor: Alan Christopher

June 24, 2014

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Review of Last Lecture

I Six Great Ideas in Computer Architecture
I Number Representation

I Bits can represent anything!
I n bits can represent up to 2n things
I Unsigned, biased, 1’s complement, 2’s complement
I Overflow
I Sign extension: same number using more bits

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Question: Consider the 4-bit numeral x = 0b1010
Which of the following numbers does x not represent, using any of
the schemes discussed yesterday in lecture (unsigned, sign and
magnitude, 1’s complement, bias, 2’s complement)?

(blue) -4
(green) -6
(purple) 10
(yellow) -2

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Question: Consider the 4-bit numeral x = 0b1010
Which of the following numbers does x not represent, using any of
the schemes discussed yesterday in lecture (unsigned, sign and
magnitude, 1’s complement, bias, 2’s complement)?

(blue) -4
(green) -6
(purple) 10
(yellow) -2

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Great Idea #1: Levels of Representation/Interpretation
High Level Language Program (e.g.C)

Assembly Language Program (e.g. MIPS)

Machine Language Program

Hardware Architecture Description
(e.g. block diagrams)

Logic Circuit Description
(Circuit Schematic Diagrams)

Compiler

Assembler

Machine Interpretation

Architecture Implementation

temp = v[k];
v[k] = v[k+1]
v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

1000 1100 0100 1000 0000 0000 0000 0000
1000 1100 0100 1001 0000 0000 0000 0100
1010 1100 0100 1001 0000 0000 0000 0000
1010 1100 0100 1000 0000 0000 0000 0100

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Outline
Basic C

General Introduction
Compilation
Types

Administrivia
C Syntax and Control Flow

Syntax
Control

Pointers
Address vs. Value
Pointer Syntax
Pointer Applications

Summary
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

General Introduction

Experience with C
I Offical prerequisites:

“Some” C experience is
required before cs61c

I C++ or Java is fine

I Average cs61c class:
I ≈ 9/10 already know Java
I ≈ 1/2 already know C++
I ≈ 1/3 already know C
I ≈ 1/10 already know C#
I ≈ 1/20 have not take

61B or equivalent
I If you have no experience in

these languages, then start
early and ask a lot of
questions in discussion!

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

General Introduction

Disclaimer

I You will not learn the full body of C in these lectures, so make
use of C references!

I K&R is THE resource
I Brian Harvey’s notes (on course website)

I http://inst.eecs.berkeley.edu/˜cs61c/resources/
HarveyNotesC1-3.pdf

I Other online resources
I http://www.stackoverflow.com/
I http://www.google.com/ (Not a joke, you’d be amazed how

effective searching on error messages can be.)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://inst.eecs.berkeley.edu/~cs61c/resources/HarveyNotesC1-3.pdf
http://inst.eecs.berkeley.edu/~cs61c/resources/HarveyNotesC1-3.pdf
http://www.stackoverflow.com/
http://www.google.com/

Basic C Administrivia C Syntax and Control Flow Pointers Summary

General Introduction

Intoducing C

I C is not a “very high level” language, nor a “big”
one, and is not specialized to any particular area of
application. But its absence of restrictions and its
generality make it more convenient and effective for
many tasks than supposedly more powerful
langauges — Kernighan and Ritchie

I With C we can write programs that allow us to exploit
underlying features of the architecture

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

General Introduction

C Concepts

These concepts distinguish C from other programming languages that you may know:
Compiler Creates useable programs from C source

code
Typed variables Must declare the kind of data the variable

will contain
Typed functions Must declare the kind of data returned

from the function
Header files (.h) Allows you to declare functions in files sep-

arate from their definitions
Structs Groups of related values
Enums Lists of predefined values
Pointers Aliases to other variables

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Compilation

Compilation Overview
I C is a compiled language
I C compilers map C programs into architecture-specific

machine code (string of 0s and 1s)
I Unlike Java, which converts to architecture independent

bytecode (run by JVM)
I Unlike most Scheme environments, which direclty interpret the

code
I These differ mainly in exactly when your program is mapped to

low-level machine instructions
I Note, we’re discussing compiled-ness as though that were a

language feature.
I This is technically a decision of how to implement a language
I But most implementors of languages follow the same choice

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Compilation

Compilation Advantages

I Excellent run-time performance: Generally much faster
than interpretted languages like Scheme or Java, because
code can be optimized for a given architecture and avoids
costly interpretation at runtime.

I Fair compilation time: Modern compilation technologies
(e.g. gmake) usually only have to recompile modified files.

I Negligible for small projects
I Indispensible for large projects

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Compilation

Compilation Disadvantages

I Compiled files, including the executable, are
architecture-specific (CPU type and OS)

I Executable must be rebuilt on each new system
I Known as “porting your code” to a new architecture

I “Modify Code → Compile → Run [repeat]” iteration cycle can
be relatively slow.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

Typed Variables in C
int x;
float y = 3.14159;
char z = ’A’;

I The type of a variable must be declared
before the variable is used

I Can combine declaration and initial
assignment for brevity

Type Description Examples
int signed integer 5, -12, 0
short int (short) smaller signed integer
long int (long) larger signed integer 5L, -12L, 0L
char single text character or symbol ’a’, ’D’, ’?’
float floating point rational numbers 0.0f, 3.14159f
double greater precision FP number 0.0, 3.14159

I Integer sizes are implementation dependant!
I 4 or 8 bytes are common choices, but cannot be assumed

I Can specify “unsigned” before ints or chars

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

sizeof()

I Need a way of peeking at the size of an integer on a given
machine to guarantee portability

I Use sizeof()
I Returns the size in bytes of a variable or datatype.

E.g.: int x; sizeof(x); sizeof(int);
I Some small subtleties with arrays and structs

I Arrays: returns the size of the size of the whole array
I Structs: returns the size of a single struct (sum of sizes of all

struct variables PLUS padding)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

Characters

I Encode characters as numbers, just like everything else
I ASCII standard defines 128 different characers and their

numeric encodings (http://www.asciitable.com)
I char representing the character ’a’ contains the value 97
I char c = ’a’; or char c = 97; are both valid

I A char takes up 1 byte of space
I Unusual, most C types have implementation specific sizes
I 7 bits is enough to represent all the characters we need, but we

add a bit, since modern computers are almost always byte
addressed

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://www.asciitable.com

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

Typecasting I

I C is a weakly typed language
I You can explicity typecast from any type to any other:

int i = -1;
if (i < 0)

printf ("This will print\n");
if ((unsigned) i < 0)

printf ("This will not print\n");

I Remember, everything is just a bitstring
I All we’re doing is changing the way those bits are interpretted

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

Typecasting II
I C is a weakly typed language

I You can explicity typecast from any type to any other:

int i = -1;
if (i < 0)

printf ("This will print\n");
if ((unsigned) i < 0)

printf ("This will not print \n");

I C will let you make typecasts, even when it doesn’t make sense:

/* structs in a few slides ,
* basically stripped -down Objects . */

struct node n;
int i = (int) n;

I Occasionally useful, but an easy source of errors for new C programmers
I Usually it’s best to avoid casting at all, if possible

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

Functions in C
/* function prototypes */
int my_func (int , int);
void say_hello ();

/* function definitions */
int my_func (int x, int y) {

say_hello ();
return x * y;

}
void say_hello () {

printf ("Hello\n");
}

I Must declare the data type
returned by a function

I Can return any C type or void
if no return value is generated

I Placed to the left of the
function name

I Function arguments must have
their types defined as well

I Functions must be declared
before they are referenced.
Commonly declared in a
“prototype” at the top of a file,
or in a header (.h) file.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

Structs
I Way of defining compound data types
I A structured group of variables, possibly including other structs

typedef struct {
int lengthInSeconds ;
int yearRecorded ;

} Song;

Song song1;

song1. lengthInSeconds = 213;
song1. yearRecorded = 1994;

Song song2 = {248 , 1988};

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Types

C vs. Java
C Java

Type of
Language

Function Oriented Object Oriented

Programming
Unit

Function Class = Abstract Data Type

Compilation Creates machine depen-
dent code

Creates machine-independent bytecode

Execution Loads and executes pro-
gram

JVM interprets bytecode

Hello
World

#include <stdio.h>

int main(void) {

printf("Hello\n");

return 0;

}

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello");

}

}

Memory
manage-
ment

Manual — malloc(),
free()

Automatic (garbage collection)

From http://www.cs.princeton.edu/introcs/faq/c2java.html
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://www.cs.princeton.edu/introcs/faq/c2java.html

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Outline
Basic C

General Introduction
Compilation
Types

Administrivia
C Syntax and Control Flow

Syntax
Control

Pointers
Address vs. Value
Pointer Syntax
Pointer Applications

Summary
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Administrivia

I Lab 1 is today
I Get class account and GitHub repository set up
I Find a partner for labs

I Don’t forget about office hours

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Outline
Basic C

General Introduction
Compilation
Types

Administrivia
C Syntax and Control Flow

Syntax
Control

Pointers
Address vs. Value
Pointer Syntax
Pointer Applications

Summary
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

C Operators
C operators and Java operators are nearly identical. For
precedence/order of execution, see Table 2-1 on p. 53 of K&R.
When in doubt, use parentheses!

I arithmetic: +, -, *, /, %
I assignment: =
I augmented assignment: +=,

-=, *=, /=, %=, &=, |=, ˆ=,
<<=, >>=

I bitwise logic: ˜, &, |, ˆ
I bitwise shifts: <<, >>
I boolean logic: !, &&, ||
I equality testing: ==, !=

I subexpression grouping: ()
I order relations: <, <=, >, >=
I increment and decrement:

++, --
I member selection: ., ->
I conditional evaluation: ? :

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

Generic C Program Layout
/* Import declarations from other files. */
include <system_files >
include "local files"

/* Replaces macro_name with macro_expr
* everywhere else in the program . */

define macro_name macro_expr

/* declare functions */
...
/* declare external variables and structs */
...

/* Programs start at main (), which must return an int. */
int main(int argc , char *argv []) {

/* Do stuff. */
}

/* define other functions */
...

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

Sample Code
include <stdio.h>
/* Magic numbers are bad. This is better . */
define REPEAT 5

int main(int argc , char *argv []) {
int i;
for (i = 0; i < REPEAT ; i += 1) {

printf ("Hello world !\n");
}
return 0;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

The syntax of main()

I To get arguments to main(), use:
I int main(int argc, char *argv[])

I What does this mean?
I argc contains the number of strings on the command line (the

executable name counts as one, plus one for each argument).
I argv is an array containing pointers to the arguments as

strings (more on pointers later)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

main() Example

$ foo hello 87
I Here argc is 3, and the array argv contains the pointers to

the following strings
argv[0]: "foo"
argv[1]: "hello"
argv[2]: "87"

I Pointers and strings will be covered later

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

Variable Declarations

I Variables must always be declared before they are used
I A variable may be initialized in its declaration

I Unitialized variables hold garbage
I Variables of the same type may be declared on the same line
I Examples:

Correct: int x;
int a, b = 10, c;

Incorrect: int x = y = z;

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Syntax

Booleans

I No explicit boolean type (unlike Java)
I What evaluates to false in C?

I 0 (integer value)
I NULL (a special pointer)

I What evaluates to true in C?
I Everything that isn’t false!
I Similar idea to scheme with #f and python with None

(although the list of false values in python is a bit longer than
that).

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Control

Control Flow I

I Should be similar to what you’ve seen before
I if-else

I if (predicate) statement
I if (predicate) statement1

else statement2
I while

I while(predicate) statement
I do

statement
while (predicate);

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Control

Control Flow II

I Should be similar to what you’ve seen before
I for

I for (initialize; check; update)
statement

I switch
I switch (expression) {

case const1: statements1
case const2: statements2
...
case constn: statementsn
default: statements_default
}

I break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Control

switch and break

I Switch statements require proper use of break to work
properly

I “Fall through” effect: will execute all cases until a break is
found

switch (ch) {
case ’+’: . . . /* does + and - */
case ’-’: . . . break;
case ’*’: . . . break;
default : . . .
}

I In some cases this is convenient, but it’s a common source of
bugs, so be careful

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Control

C99
I The K&R describes the ANSI C standard. C99 adds some

new, convenient features to the language.
I To compile with C99 use the “-std=c99” or “-std=gnu99” flag

with gcc
I References

I http://en.wikipedia.org/wiki/C99
I http:

//home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html
I Highlights

I Declarations in for loops, like Java
I Java-like //-style comments
I Variable length non-global arrays
I <inttypes.h> for explicit integer types
I <stdbool.h> for boolean logic definitions

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

http://en.wikipedia.org/wiki/C99
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html
http://home.tiscalinet.ch/t_wolf/tw/c/c9x_changes.html

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Control

Technology Break

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Outline
Basic C

General Introduction
Compilation
Types

Administrivia
C Syntax and Control Flow

Syntax
Control

Pointers
Address vs. Value
Pointer Syntax
Pointer Applications

Summary
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

Address vs. Value

I Consider memory to be a single huge array
I Each cell/entry of the array has an address
I Each cell also stores some value

I Don’t confuse the address referring to a memory location with
the value stored there

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

Pointers

I A pointer is a variable that contains an address
I An address refers to a particular memory location, usually also

associated with a variable name
I Name comes from the fact that you can say that a pointer

points to a value in memory

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

Pointer Syntax

I int *x;
I Declare variable x to be the address of an int

I x = &y;
I Assigns the address of y to x
I & called the “address operator” in this context

I z = *x;
I Assigns the value at x to z
I * called the “dereference operator” in this context

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

An Example

int *p, x, y; p: ? x: ? y: ? Declare

x=3; y=4; p: ? x: 3 y: 4 Assign vals

p=&x; p: x: 3 y: 4 Assign ref

*p = 5; p: x: 5 y: 4 Dereference (1)

y = *p; p: x: 5 y: 5 Dereference (2)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

An Example

int *p, x, y; p: ? x: ? y: ? Declare

x=3; y=4; p: ? x: 3 y: 4 Assign vals

p=&x; p: x: 3 y: 4 Assign ref

*p = 5; p: x: 5 y: 4 Dereference (1)

y = *p; p: x: 5 y: 5 Dereference (2)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

An Example

int *p, x, y; p: ? x: ? y: ? Declare

x=3; y=4; p: ? x: 3 y: 4 Assign vals

p=&x; p: x: 3 y: 4 Assign ref

*p = 5; p: x: 5 y: 4 Dereference (1)

y = *p; p: x: 5 y: 5 Dereference (2)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

An Example

int *p, x, y; p: ? x: ? y: ? Declare

x=3; y=4; p: ? x: 3 y: 4 Assign vals

p=&x; p: x: 3 y: 4 Assign ref

*p = 5; p: x: 5 y: 4 Dereference (1)

y = *p; p: x: 5 y: 5 Dereference (2)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Address vs. Value

An Example

int *p, x, y; p: ? x: ? y: ? Declare

x=3; y=4; p: ? x: 3 y: 4 Assign vals

p=&x; p: x: 3 y: 4 Assign ref

*p = 5; p: x: 5 y: 4 Dereference (1)

y = *p; p: x: 5 y: 5 Dereference (2)

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Syntax

Pointer Types I

I Pointers are used to point to one kind of data (int, char, a
struct, etc.)

I Pointers to pointers? Why not! (e.g. int **h)
I Exception is the type void *, which can point to anything

I Use sparingly to avoid bugs and unreadable code.

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Syntax

Pointer Types II

I Functions can return pointers

char *foo(char data) {
return &data;

}

I Placement of * does not matter to the compiler, but it might
matter to you

I int* x; is equivalent to int *x;
I int* x,y,z; is NOT the same as int *x, *y, *z;

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Pointers and Parameter Passing

I Java and C pass parameters “by value”
I Procedure/function/method gets a copy of the parameter, so

changing the copy does not change the original
Function:

void addOne (int x) {
x = x + 1;

}

Code:

int y = 3;
addOne (y); /* Does nothing . */

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Pointers and Parameter Passing
I how do we get a function to change a value?

I Pass “by reference”: Instead of passing in the value, pass in a
pointer to the value. The function can then modify the value
by dereferencing the pointer it was given.

Function:

void addOne (int *x) {
*x = *x + 1;

}

Code:

int y = 3;
addOne (&y); /* y == 4 */

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Pointers in C

I Why use pointers?
I When passing a large struct or array, it’s much faster to pass a

pointer than to copy the whole thing
I Pointers allow for cleaner, more compact code

I Pointers are likely the single largest source of bugs in C
I Most problematic with dynamic memory management, which

we’ll cover later
I Dangling references and memory leaks

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Pointer Bugs

I Local variables in C are not automatically initialized, they may
contain anything (i.e. garbage)

I Declaring a pointer just allocates space to hold the pointer –
it does not allocate space for the thing being pointed to!

void f() {
int *p, x;

/* BAAAD! */
x = *p;

}

void f2() {
int *p;

/* BAAAD! */
*p = 5;

}

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Question: How many errors (syntactical and logical) exist in this
C99 code?
void flip -sign(int *n) { *n = -(*n) }
void main (); {

int *p, x = 5, y; // init
y = *(p = &x) + 1;
int z;
flip -sign(p);
printf ("x=%d,y=%d,p=%d\n", x, y, p);

}

(blue) 2
(green) 3
(purple) 4
(yellow) 5+

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Question: How many errors (syntactical and logical) exit in this
C99 code?
#include <stdio.h>
void flip-sign(int *n) { *n = -(*n); }
void main (); {

int *p, x = 5, y; // init
y = *(p = &x) + 1;
int z;
flip-sign(p);
printf ("x=%d,y=%d,p=%d\n", x, y, *p);

}

(blue) 2
(green) 3
(purple) 4
(yellow) 5+

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Question: What is the output from the corrected code below?
include <stdio.h>
void flip_sign (int *n) { *n = -(*n); }
int main () {

int *p, x = 5, y; // init
y = *(p = &x) + 1;
int z;
flip_sign (p);
printf ("x=%d,y=%d,*p=%d\n", x, y, *p);

}

(blue) 5,6,-5
(green) -5,6,-5
(purp) -5,4,-5
(yell) -5,-6,-5

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Pointer Applications

Question: What is the output from the corrected code below?
include <stdio.h>
void flip_sign (int *n) { *n = -(*n); }
int main () {

int *p, x = 5, y; // init
y = *(p = &x) + 1;
int z;
flip_sign (p);
printf ("x=%d,y=%d,*p=%d\n", x, y, *p);

}

(blue) 5,6,-5
(green) -5,6,-5

(purp) -5,4,-5
(yell) -5,-6,-5

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Outline
Basic C

General Introduction
Compilation
Types

Administrivia
C Syntax and Control Flow

Syntax
Control

Pointers
Address vs. Value
Pointer Syntax
Pointer Applications

Summary
Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

Basic C Administrivia C Syntax and Control Flow Pointers Summary

Summary

I C is an efficient (compiled) language, but leaves safety to the
programmer

I Weak type safety, variables not auto-initialized
I Pointers are awesome, but dangerous; be careful

I Pointers in C are really addresses
I Each memory location has an address and has a value stored in

it
I * “follows” a pointer to its value
I & gets the address of a value

I C functions are “pass by value”

Instructor: Alan Christopher
CS 61c: Great Ideas in Computer Architecture

	Basic C
	General Introduction
	Compilation
	Types

	Administrivia
	C Syntax and Control Flow
	Syntax
	Control

	Pointers
	Address vs. Value
	Pointer Syntax
	Pointer Applications

	Summary

