
8/9/2014

1

CS61C Summer 2014 Final 
Review

Andrew Luo

Agenda

• CALL

• Virtual Memory

• Data Level Parallelism

• Instruction Level Parallelism

• Break

• Final Review Part 2 (David)

CALL

• CALL:
• Compiler

• Assembler

• Linker

• Loader

CALL

• Compiler
• Takes high-level code (such as C) and creates assembly code

• Assembler
• Takes assembly code and creates intermediate object files

• Linker
• Links intermediate object files into executable/binary

• Loader
• Runs the executable/binary on the machine; prepares the memory structure

Compiler

• Project 1

• Takes a high level language (such as C or C++) and compiles it into a 
lower-level, machine-specific language (such as x86 ASM or MIPS 
ASM)

• Different than an interpreter!

Compilation vs Interpretation

• C is a compiled language, whereas C#, Java, and Python are 
interpreted (Java is a little different actually but is interpreted in the 
end)

• Technically an implementation detail, as languages are just semantics; 
theoretically it would be possible to interpret C and compile 
C#/Java/Python, but this is rare/odd in practice.



8/9/2014

2

What are some advantages/disadvantages of 
compilation and interpretation?
• First, you tell me!

What are some advantages/disadvantages of 
compilation and interpretation?
• Compilation is faster

• Generally interpreted languages are higher-level and easier to use

• Interpretation is simpler/easier

• Interpretation generates smaller code

• Interpretation is more machine independent

Assembler

• Assembles assembly language code into object files

• Fairly basic compared to the compiler

• Usually a simple 1:1 translation from assembly code to binary 

Assembler Directives

• Who knows these assembler directives?

• .text

• .data

• .globl sym

• .asciiz

• .word

Assembler Directives

• Who knows these assembler directives?

• .text: text segment, code

• .data: data segment, binary data

• .globl sym: global symbols that can be exported to other files

• .asciiz: ASCII strings

• .word: 32-bit words

Assembler: Branches and Jumps

• How are these handled by the assembler?



8/9/2014

3

Assembler: Branches and Jumps

• First run through the program and change and psuedoinstructions to 
the corresponding real instructions.
• Why do this?

Assembler: Branches and Jumps

• First run through the program and change and psuedoinstructions to 
the corresponding real instructions.
• Some psuedoinstructions actually become 2 or more instructions so will 

change the absolute and/or relative addresses of branch and/or jump targets

• Next, convert all the labels to addresses and replace them
• Branches are PC-relative

• Jumps are absolute addressed

Linker

• Link different object files together to create an executable

• Must resolve address conflicts in different files
• Relocate code -> change addresses

Loader

• Handled by the operating system (and by the C Runtime)

• Prepares memory resources, such as initializing the stack pointer, 
allocating the necessary pages for heap, stack, static, and text 
segments.

Agenda

• CALL

• Virtual Memory

• Data Level Parallelism

• Instruction Level Parallelism

• Break

• Final Review Part 2 (David)

Regs

L2 Cache

Memory

Disk

Tape

Instr Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

L1 Cache
Blocks

Memory Hierarchy

8/31/2014 Summer 2014 - Lecture 23 18

Next Up:
Virtual

Memory

Earlier:
Caches



8/9/2014

4

Memory Hierarchy Requirements

• Principle of Locality 
• Allows caches to offer (close to) speed of cache memory 

with size of DRAM memory

• Can we use this at the next level to give speed of DRAM 
memory with size of Disk memory?

• What other things do we need from our memory 
system?

8/31/2014 Summer 2014 - Lecture 23 19

Memory Hierarchy Requirements

• Allow multiple processes to simultaneously occupy 
memory and provide protection
• Don’t let programs read from or write to each other’s 

memories

• Give each program the illusion that it has its own 
private address space
• Suppose a program has base address 0x00400000, then 

different processes each think their code resides at the 
same address

• Each program must have a different view of memory

8/31/2014 Summer 2014 - Lecture 23 20

Virtual Memory

• Next level in the memory hierarchy
• Provides illusion of very large main memory

• Working set of “pages” residing in main memory 
(subset of all pages residing on disk)

• Main goal: Avoid reaching all the way back to disk as 
much as possible

• Additional goals:
• Let OS share memory among many programs and protect 

them from each other

• Each process thinks it has all the memory to itself

8/31/2014 Summer 2014 - Lecture 23 21

Virtual to Physical Address Translation

• Each program operates in its own virtual address 
space and thinks it’s the only program running

• Each is protected from the other

• OS can decide where each goes in memory

• Hardware gives virtual  physical mapping
8/31/2014 Summer 2014 - Lecture 23 22

Program 
operates in its 

virtual 
address space

Virtual
Address (VA)

(inst. fetch
load, store)

HW 
mapping

Physical
Address (PA)

(inst. fetch
load, store)

Physical 
memory 

(including 
caches)

Mapping VM to PM
• Divide into equal sized chunks 

(usually 4-8 KiB)

• Any chunk of Virtual Memory can be 
assigned to any chunk of Physical 
Memory (“page”)

8/31/2014 Summer 2014 - Lecture 23 230

Physical Memory


Virtual Memory

Code

Static

Heap

Stack

64 MB

0

Address Mapping

• Pages are aligned in memory
• Border address of each page has same lowest bits

• Page size (P bytes) is same in VM and PM, so denote lowest 
PO = log2(P) bits as page offset

• Use remaining upper address bits in mapping
• Tells you which page you want (similar to Tag)

8/31/2014 Summer 2014 - Lecture 23 24

Page OffsetVirtual Page #Page OffsetPhysical Page #

Same SizeNot necessarily 
the same size



8/9/2014

5

Page Table Entry Format

• Contains either PPN or indication not in main memory

• Valid = Valid page table entry
• 1  virtual page is in physical memory

• 0  OS needs to fetch page from disk

• Access Rights checked on every access to see if 
allowed (provides protection)
• Read Only: Can read, but not write page

• Read/Write: Read or write data on page

• Executable: Can fetch instructions from page

8/31/2014 Summer 2014 - Lecture 23 25

Page Table Layout

8/31/2014 Summer 2014 - Lecture 23 26

V AR PPN

X XX

Virtual Address: VPN offset

Page Table

1) Index 
into PT 

using VPN

2) Check 
Valid and 

Access 
Rights bits

+

3) Combine 
PPN and 

offset

Physical
Address

4) Use PA 
to access 
memory

Translation Look-Aside Buffers (TLBs)

• TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be direct mapped, set associative, 
or fully associative

Processor
TLB

Lookup
Cache

Main

Memory

VA PA

miss

hit data

Trans-

lation

hit

miss

On TLB miss, get page table entry from main memory

Context Switching and VM

• What happens in the case of a context switch?

Context Switching and VM

• We need to flush the TLB

• Do we need to flush the cache?

Context Switching and VM

• We need to flush the TLB as they are in virtual addresses
• In reality we can use context tagging

• Do we need to flush the cache?
• No, if using physical addresses

• Yes, if using virtual addresses



8/9/2014

6

• A program’s address space
contains 4 regions:
• stack: local variables, grows

downward

• heap: space requested for pointers 
via malloc() ; resizes dynamically, 
grows upward

• static data: variables declared 
outside main, does not grow or 
shrink

• code: loaded when program starts, 
does not change code

static data

heap

stack

What is the grey are between 

the stack and the heap?

~ FFFF FFFFhex

~ 0hex

Why would a process need to “grow”?
Practice Problem

• For a 32-bit processor with 256 KiB pages and 512 MiB of main 
memory:
• How many entries in each process’ page table?

• How many PPN bits do you need?

• How wide is the page table base register?

• How wide is each page table entry? (assume 4 permission bits)

Practice Problem

• For a 32-bit processor with 256 KiB pages and 512 MiB of main 
memory:
• How many entries in each process’ page table?

• 256 KiB -> 18 offset bits, 32 – 18 = 14 VPN bits, 2^14 entries

• How PPN bits?
• 512 MiB/256 KiB = 2^29 / 2^18 = 2^11 pages, 11 PPN bits

• How wide is the page table base register?
• log(512 MiB) = 29

• How wide is each page table entry? (assume 4 permission bits)
• 4 (permission) + 11 (PPN) + 1 (valid) + 1 (dirty) = 17

Agenda

• CALL

• Virtual Memory

• Data Level Parallelism

• Instruction Level Parallelism

• Break

• Final Review Part 2 (David)

SIMD

• Who knows what SIMD is?

SIMD

• Who knows what SIMD is?
• Single Instruction Multiple Data



8/9/2014

7

SIMD

• MIMD, MISD, SISD?

• Examples of each?

SSE Problem

float* add(float* a, float* b, size_t n)

{

}

SSE Problem

float* add(float* a, float* b, size_t n)

{

float* result = malloc(sizeof(float) * n);

}

SSE Problem

float* add(float* a, float* b, size_t n)

{

float* result = malloc(sizeof(float) * n);

for (size_t i = 0; i < n – 3; i += 4)

{

_mm_storeu_ps(result, _mm_add_ps(_mm_loadu_ps(a + i), _mm_loadu_ps(b + i)));

}

}

SSE Problem

float* add(float* a, float* b, size_t n)

{

float* result = malloc(sizeof(float) * n);

size_t i = 0;

for (; i < n – 3; i += 4)

{

_mm_storeu_ps(result, _mm_add_ps(_mm_loadu_ps(a + i), _mm_loadu_ps(b + i)));

}

for (; i < n; i++)

{

result[i] = a[i] + b[i];

}

return result;

}

Agenda

• CALL

• Virtual Memory

• Data Level Parallelism

• Instruction Level Parallelism

• Break

• Final Review Part 2 (David)



8/9/2014

8

Multiple Issue

• Modern processors can issue and execute 
multiple instructions per clock cycle

• CPI < 1 (superscalar), so can use Instructions 
Per Cycle (IPC) instead

• e.g. 4 GHz 4-way multiple-issue can execute 16 
billion IPS with peak CPI = 0.25 and peak IPC = 
4
• But dependencies and structural hazards reduce 

this in practice

8/31/2014 Summer 2014 - Lecture 23 43

Multiple Issue

• Static multiple issue
• Compiler reorders independent/commutative 

instructions to be issued together
• Compiler detects and avoids hazards

• Dynamic multiple issue
• CPU examines pipeline and chooses instructions to 

reorder/issue

• CPU can resolve hazards at runtime

8/31/2014 Summer 2014 - Lecture 23 44

Agenda

• CALL

• Virtual Memory

• Data Level Parallelism

• Instruction Level Parallelism

• Break

• Final Review Part 2 (David)


