8/9/2014

CS61C Summer 2014 Final
Review

Andrew Luo

Agenda

* CALL

« Virtual Memory

* Data Level Parallelism

* Instruction Level Parallelism
* Break

* Final Review Part 2 (David)

CALL CALL
« CALL: * Compiler
* Compiler « Takes high-level code (such as C) and creates assembly code
* Assembler * Assembler
+ Linker « Takes assembly code and creates intermediate object files
* Loader .
* Linker
« Links intermediate object files into executable/binary
* Loader
* Runs the executable/binary on the machine; prepares the memory structure
Compiler Compilation vs Interpretation
* Project 1 « Cis a compiled language, whereas C#, Java, and Python are

* Takes a high level language (such as C or C++) and compiles it into a
lower-level, machine-specific language (such as x86 ASM or MIPS
ASM)

« Different than an interpreter!

interpreted (Java is a little different actually but is interpreted in the
end)

« Technically an implementation detail, as languages are just semantics;
theoretically it would be possible to interpret C and compile
C#/Java/Python, but this is rare/odd in practice.

8/9/2014

What are some advantages/disadvantages of
compilation and interpretation?

* First, you tell me!

What are some advantages/disadvantages of
compilation and interpretation?

* Compilation is faster

« Generally interpreted languages are higher-level and easier to use
* Interpretation is simpler/easier

* Interpretation generates smaller code

* Interpretation is more machine independent

Assembler

* Assembles assembly language code into object files
* Fairly basic compared to the compiler
* Usually a simple 1:1 translation from assembly code to binary

Assembler Directives

* Who knows these assembler directives?
* text

* .data

.globl sym

* .asciiz

.word

Assembler Directives

* Who knows these assembler directives?

.text: text segment, code
.data: data segment, binary data

.globl sym: global symbols that can be exported to other files
.asciiz: ASCII strings

.word: 32-bit words

Assembler: Branches and Jumps

* How are these handled by the assembler?

8/9/2014

Assembler: Branches and Jumps

« First run through the program and change and psuedoinstructions to
the corresponding real instructions.
* Why do this?

Assembler: Branches and Jumps

* First run through the program and change and psuedoinstructions to
the corresponding real instructions.
* Some psuedoinstructions actually become 2 or more instructions so will
change the absolute and/or relative addresses of branch and/or jump targets
* Next, convert all the labels to addresses and replace them
* Branches are PC-relative
* Jumps are absolute addressed

Linker

« Link different object files together to create an executable

* Must resolve address conflicts in different files
* Relocate code -> change addresses

Loader

* Handled by the operating system (and by the C Runtime)

* Prepares memory resources, such as initializing the stack pointer,
allocating the necessary pages for heap, stack, static, and text
segments.

Agenda

* CALL

* Virtual Memory

* Data Level Parallelism

* Instruction Level Parallelism
* Break

* Final Review Part 2 (David)

Memory Hierarchy

g Upper Level
“Instr Operands Faster
Earlier: L1 Cac?ek
Caches Blocks
L2 Cache
Next Up:
Virtual
Memory | [Disk 1
_t_Files !
p arger
| Tape I Lower Level

8/9/2014

Memory Hierarchy Requirements

* Principle of Locality
 Allows caches to offer (close to) speed of cache memory
with size of DRAM memory
« Can we use this at the next level to give speed of DRAM
memory with size of Disk memory?
* What other things do we need from our memory
system?

Memory Hierarchy Requirements

* Allow multiple processes to simultaneously occupy
memory and provide protection
« Don't let programs read from or write to each other’s
memories
* Give each program the illusion that it has its own
private address space
* Suppose a program has base address 000400000, then

different processes each think their code resides at the
same address

* Each program must have a different view of memory

Virtual Memory

* Next level in the memory hierarchy
* Provides illusion of very large main memory
* Working set of “pages” residing in main memory
(subset of all pages residing on disk)
* Main goal: Avoid reaching all the way back to disk as
much as possible
* Additional goals:

* Let OS share memory among many programs and protect
them from each other

« Each process thinks it has all the memory to itself

Virtual to Physical Address Translation

Program Physical

operates inits HW memory
virtual mapping (including

address space caches)

* Each program operates in its own virtual address
space and thinks it’s the only program running

* Each is protected from the other
* OS can decide where each goes in memory
* Hardware gives virtual = physical mapping

Mapping VM to PM

« Divide into equal sized chunks
(usually 4-8 KiB)

* Any chunk of Virtual Memory can be
assigned to any chunk of Physical I
Memory (“page”)

Virtual Memory
[o o

Physical Memory i

64 MB

Static

Address Mapping

 Pages are aligned in memory
* Border address of each page has same lowest bits
* Page size (P bytes) is same in VM and PM, so denote lowest
PO = log,(P) bits as page offset
* Use remaining upper address bits in mapping
« Tells you which page you want (similar to Tag)

Virtual Page # |Page Offset
T t 1 k)
)
Not necessarily Same Size
the same size

8/9/2014

Page Table Entry Format

« Contains either PPN or indication not in main memory
« Valid = Valid page table entry

« 1 - virtual page is in physical memory

* 0 - 0S needs to fetch page from disk
* Access Rights checked on every access to see if

allowed (provides protection)

* Read Only: Can read, but not write page

* Read/Write: Read or write data on page

* Executable: Can fetch instructions from page

Page Table Layout

tual Address: VPN
Page Table 3) Combine
V | AR PPN and
offset
1) Index X 2) Check —
into PT Validand __|
using VPN Access |
Rights bits

t ; 4) Use PA

to access

memory

Translation Look-Aside Buffers (TLBs)

* TLBs usually small, typically 128 - 256 entries
« Like any other cache, the TLB can be direct mapped, set associative,

or fully associativs VA o
Cache|miss

hit data

Main
Memory

Processor

On TLB miss, get page table entry from main memory

Context Switching and VM

* What happens in the case of a context switch?

Context Switching and VM

* We need to flush the TLB
* Do we need to flush the cache?

Context Switching and VM

* We need to flush the TLB as they are in virtual addresses
* In reality we can use context tagging

* Do we need to flush the cache?
* No, if using physical addresses
* Yes, if using virtual addresses

8/9/2014

Why would a process need to “grow”?

. . Practice Problem
A program’s ac stack
contains 4 regions: F 7 7l 7 7|
: local variables, grows * For a 32-bit processor with 256 KiB pages and 512 MiB of main
downward) memory:
eap: sI:Jace requ_este; for p_c»m”ters * How many entries in each process’ page table?
\g/:f)w:u;::;;dresﬂes ynamically, [l _]_ > * How many PPN bits do you need?
. variables declared heap * How wide is the page table base register?
outside méin, does not grow or * How wide is each page table entry? (assume 4 permission bits)
shrink static data
: loaded when program starts,
does not change code
Opee
What is the grey are between
the stack and the heap?
Practice Problem Agenda
* For a 32-bit processor with 256 KiB pages and 512 MiB of main * CALL
memory: « Virtual Memory

* How many entries in each process’ page table?
* 256 KiB -> 18 offset bits, 32 — 18 = 14 VPN bits, 2714 entries
* How PPN bits? * Instruction Level Parallelism
* 512 MiB/256 KiB = 2429 / 2718 = 2/11 pages, 11 PPN bits
* How wide is the page table base register?
+ log(512 MiB) = 29 * Final Review Part 2 (David)
* How wide is each page table entry? (assume 4 permission bits)
« 4 (permission) + 11 (PPN) + 1 (valid) + 1 (dirty) = 17

* Data Level Parallelism

* Break

SIMD SIMD

* Who knows what SIMD is? * Who knows what SIMD is?
* Single Instruction Multiple Data

8/9/2014

SIMD

« MIMD, MISD, SISD?
* Examples of each?

SSE Problem

float* add(float* a, float* b, size_t n)
{

SSE Problem

float* add(float* a, float* b, size_t n)
{

float* result = malloc(sizeofffloat) * n);

SSE Problem

float* add(float* a, float* b, size_t n)

{
float* result = malloc(sizeofffloat) * n);
for (size_ti=0;i<n—3;i+=4)
{

_mm_storeu_ps(result,_mm_add_ps(_mm_loadu_ps(a +1), _mm_loadu_ps(b +)));

SSE Problem

float* add(float* a, float* b, size_t n)

{
float* result = malloc{sizeofifloat) * n);
size_ti=0;
for (;i<n=3;i+=4)

{

_mm_storeu_ps(result, _mm_add_ps(_mm_loadu_ps(a + i), _mm_loadu_ps(b + i)));

i
for (;i<n;i++)
{
result[i] = ali] + bfil;
i

return result;

Agenda

* CALL

* Virtual Memory

* Data Level Parallelism

* Instruction Level Parallelism
* Break

* Final Review Part 2 (David)

8/9/2014

Multiple Issue

* Modern processors can issue and execute
multiple instructions per clock cycle

* CPlI < 1 (superscalar), so can use Instructions
Per Cycle (IPC) instead

* e.g. 4 GHz 4-way multiple-issue can execute 16
billion IPS with peak CPI =0.25 and peak IPC =
4

« But dependencies and structural hazards reduce
this in practice

Multiple Issue

« Static multiple issue
« Compiler reorders independent/commutative
instructions to be issued together
« Compiler detects and avoids hazards
* Dynamic multiple issue

* CPU examines pipeline and chooses instructions to
reorder/issue
* CPU can resolve hazards at runtime

Agenda

* CALL

* Virtual Memory

« Data Level Parallelism

* Instruction Level Parallelism
* Break

* Final Review Part 2 (David)

