Discussion #7: Performance and Caches
Written by Justin Hsia (7/13/2011)

Performance

The most common performance metrics are throughput (bandwidth) and response time
(latency), the difference being that throughput is the rate of total work done and response time is time
to completion of a task. Faster execution is considered better performance, so we use:

1

Performance = ———
Execution Time

Most performance questions can be solved using the following equation:

Seconds  Instructions _ Clock Cycles Seconds

= X — X
Program Program Instruction ~ Clock Cycle
— ~—————
CPU Time IC CPI cc

We can clearly see that this works by dimensional analysis. In general, a tricky part of performance
guestions is making sure your units are correct.

e Clock cycle time (CC) is often given as clock rate (Hz = cycles/sec = 1/CC)

e Average CPI can be calculated from an instruction breakdown of a program. For example, a
program of 5 loads taking 4 cycles each and 3 adds taking 1 cycle each has an average CPI of
(5*4 +3*1)/(5 + 3) = 23/8 = 2.875.

Direct-Mapped Caches
What is Caching?

A cache is a small, but fast layer of memory that is used to improve system performance. Fast
memory is expensive and cheap memory is slow. To compromise, we use caches in our memory
heirarchy to give the illusion of having access speed close to that of the fastest technology and having as
much space as the cheapest technology. Caching takes advantage of the following principles:

Temporal Locality — a recently-accessed item will often be accessed again soon.
Spatial Locality — we tend to access nearby items to ones that have been accessed recently.

A cache stores chunks of sequential data known as blocks (or lines). Because of its limited
space, we can only hold so many blocks at a time. A direct-mapped cache is essentially a hash table
where each address in memory corresponds to a single location within the caches (called a row). In
particular, the hash function used is modulus by a power of 2. Convince yourself that x%(2~n) returns
the lowest n bits of x. By making our caches use a power of 2 number of rows, we arrive at the
following convenient method of doing cache accesses:



TIO Breakdown:
A-1 A-2 _ ..

... 10

Tag

Offset

Above is how we break down a request for data at a given address. As shown the addressis A

bits wide and the splitting is always done in the given order, where the T leftmost bits form the Tag
field, the 1 middle bits form the Index field, and the O rightmost bits form the Offset field.

o Offset field (“column index”) indicates the location of the requested address within its block.

¢ Index field (“row index”) indicates the row within the cache that the requested address goes in.

o Tag field (“block identifier”) indicates if the present block matches the one you want.

For calculating field width or cache parameters, recall the Power of Two portion from Discussion

1. We can represent up to 2" things using n bits, which means we need log,(2™) = n bits to represent

2" things.
0 =log, (Block size/B),

Cache Terminology:

1 =log, (Cache rows =

Cache Size), T = A—1-0

Block Size

Cache Size — total amount of just data held in the cache (Block Size X Cache rows)

Cache hit — requested address already in the cache (fast return)

Cache miss — cache index “empty” (not valid), so read from memory and write to cache (slow).

Cache miss, block replacement — cache index has wrong block (non-matching tag), so read from memory

and override block (slow).

Cache hit rate — For a given set of requests, the percentage that result in cache hits.
Cache miss rate — Same as hit rate, but percentage that miss (1 — hit rate).

Using the Cache:

Address (showing bit positions)

3130 --- 131211---2 10
Byte
offset
Hit 20 10
Tag +
Index
Index  Valid Tag Data
0
1
2
1021
1022
1023
420 432
l(:

Here is a diagram showing how a direct-
mapped cache determines a cache hit.

The cache itself is represented by the table
in the middle and the requested address is
shown at the top in what is known as its TIO
breakdown (tag-index-offset). Here the field
widths are set to 20, 10, and 2, respectively,
but these will change based on the design of
our cache.

A cache hit is determined by checking
accessing the row of the cache specified by
the index field of the address and then
comparing the tag fields. If they match and
the data is Valid, then return the requested
part of the data block specified by the offset
field.



Handling Writes:

So far we’ve only mentioned caching in terms of access to data. Caches are used for all memory
accesses, including data writes. Here we define a write hit as a request to write to an address that
already exists in the cache and a write miss as a request to write to an address that is not present in the
cache.

On a write hit, the address is in the cache already and the next request for that address will
come straight from the cache. So we can either update the data in both the cache and in memory
(write-through policy) or we can just write to the cache (write-back policy). Write-through ensures that
the data in memory matches that in the cache, which is known as consistency, but writing to memory
every time is slow. Write-back only writes to memory when a changed block is being replaced in the
cache. We keep track of which blocks need to be written back by adding a “Dirty” bit to each block.

On a write miss, our choices are to either fetch the requested address from memory into the
cache and then write to both memory and cache (write allocate) or bypass the cache and write only to
memory (no-write allocate). Write allocate obviously takes longer, but keeps the data consistent
between memory and the cache.

Set Associative Caches
So What’s the Difference?

In a direct-mapped cache, each block can only go in a single location in the cache. This can lead
to a high volume of collisions and block replacements in poorly-optimized code. A set associative cache
allows each block to fit into a specified set of locations, which should reduce the number of
replacements. An n-way set associative cache uses sets of size n, meaning each block can fit into n
different locations in the cache. Of special note, a fully associative cache is a cache using a single set
that is the size of the entire cache, meaning that every block can be stored anywhere in the cache.

Geometrically, this is equivalent to placing n blocks (and their associated tag fields) in each row.
In this sense, “rows” and “sets” are the same, but for the sake of consistency we will only use “row” for
direct-mapped. An associative cache will still use a similar hashing function of modulus a power of 2,
but the number of cache sets is different. To access a block, you must check EVERY tag field in the set!
Here we gain some performance by reducing the miss rate, but lose some performance by increasing
the data access time. When a replacement does need to happen, usually you replace the least recently
used (LRU) block within the set.

TIO Revisited:

The Index field specifies which set of the cache to look in. So whereas for a direct-mapped

Cache Size now # sets __ CacheSize
Block Size’ assoc —

from a direct-mapped cache to an n-way associative cache, this is equivalent to moving log, n bits from
the Index field to the Tag field.

cache we had # rowsy_p,, = and I =log,(# sets). To convert

Block Sizexn



Multilevel Caches

Not only can you have multiple caches, but we can layer them such that misses from the first
cache (which we will call the L1S) then pass the request on to the second cache (L2S). Misses from L2
then go back to main memory (MM). The reason for doing this will become more apparent as we
discuss cache performance next.

Cache Performance

Cache performance is measured in average time (in clock cycles or seconds) it takes to perform
instructions. Memory hierarchy accesses are slow and cause the processor to stall while it waits for the
data to be retrieved. Here we define the additional terminology for performance:

Hit Time — The time it takes a specified memory layer to return a piece of data that it is currently storing.
Miss penalty — The time required to fetch a block into a specified memory layer.
Average Memory Access Time (AMAT) — Averaged time to access data for both hits and misses.

AMAT = Hit Time + Miss Rate X Miss Penalty

For a single cache, this is quite straightforward. Miss Penalty will be access time of main
memory (MM). For multilevel caches, this equation can be expanded using the relation:

Miss Penalty; = Hit Time;,; + Miss Rate;,; X Miss Penalty;

You keep expanding until you hit the Miss Penalty for MM. Multiplying everything through will
get you your AMAT. Here the Miss Rate is a local miss rate, the fraction of requests to a specified cache
that miss. The global miss rate, the fraction of requests that have to go all the way to MM, is not a
property of a specific level of caching, but a property of the overall memory hierarchy. The global miss
rate can be calculated as the product of all local miss rates for each level of the memory hierarchy.

CPlgtan = CPly,60 + Average Memory-stall cycles

Memory accesses
= CPIbase +

- X Miss Rate X Miss Penalty
Instruction

CPlg (also called “Total CPI” in P&H) is just our normal CPI, but now taking into account
processor stalls for memory accesses. CPly is the CPI if we never had to access memory. Here we
typically specify that there are separate caches for instructions (1$), which must be fetched from the
code section, and for data (DS), which fetches requested data from the stack, heap, or static data. 1S

will be fetched from all the time, which DS is only fetched from on load and store instructions. So

Memory accesses . . .
mstfm will be 1 for instruction fetches and < 1 for data accesses (30% Id/st means

M . . . .
o7y areesses = 0.3). CPlg.; calculations will typically include accesses to both IS and DS.
Instruction

Notice any similarities? It turns out that we can also use the following relationship:

Memory accesses

CPlgtan = CPlpgse + x (AMAT — Hit Time)

Instruction



