Discussion #3: Memory Management
Written by Justin Hsia (6/27/2011)

Memory Layout:

static data

code

Registers:

The address space is represented graphically on the left. The lowest address
is at the bottom and the highest address is at the top. It contains the
following four regions:

Stack: LIFO stack of frames (local variable environments). Holds local
variables and grows downwards (advance by reducing address).

Heap: Holds dynamically allocated memory (malloc). Grows “upward,” but
not necessarily in a linear fashion (see section below).

Static Data: Global variables. Size does not change, but contents can.

Code: Keeps a copy of your code. Does not change.

Although not technically a part of memory layout, it’s good to remember that these exist. Most

small operations will be handled entirely in registers, removing the need for memory access, which is

slow.

Check: For the code on the left, which memory sections would the quantities on the right reside?

#define val 16 arg?
char arr[] = “foo”; arr?
void foo(int arg) { str?

char *str = (char *) malloc (val); *str?

char *ptr

}

arr; val?

Check: A function call causes an additional frame to be added to the stack. Although elegant, what is a
potential problem with recursive procedures?

Dynamic Memory Allocation:

Why is dynamic memory allocation desirable?

1) Persistence — allocated memory stays around and does not become “garbage” as the stack

changes.

2) Dynamic sizing — we might not know beforehand how much space we need. Useful for

dealing with inputs of unknown size (such as storing into a linked list).



sizeof operator:

The sizeof operator yields the number of bytes required to store an object of the type of its
operand. You can pass it a variable such as sizeof(i) or pass it the name of the type, such as
sizeof(int). Thisis VERY useful for figuring out how much space to request from mal loc especially
for structs. The returned value will essentially be an unsigned integer.

Note: When passed the name of an array, sizeof will return the total size of the array. When
passed a pointer, sizeof will return the size of the pointer. This is another difference
between arrays and pointers!

malloc and free:

These are the two functions we use to dynamically allocate memory:

void *malloc(size_t size)
void free(void *p)

Don’t fret about the void pointers: basically free can take any pointer, though the pointer
returned by malloc must be cast into the proper type before storing. malloc returns NULL if the

allocation request cannot be satisfied. free will only work if it is passed the exact same address that
mal loc returned when allocating the space. As usual, the space returned by malloc is uninitialized.

Fragmentation and allocation policies:

As mentioned before, dynamically-allocated memory does not “grow” the same way the stack
does. Allocated memory cannot be moved because it must remain available to the user at the address
supplied to it. After much use of malloc/free, we get fragmentation when the heap gets separated
into small chunks.

fragmentation: If you're interested in reading more about it for your own edification, K&R section 8.7
contains one possible implementation (good practice reading C code, too!).

Don’t fret the details, but here are some notes on the general schemes just FYI:

Best-fit: Choose smallest block that is big enough to fulfill the request. Tries to limit wasted
space, but takes time to examine ALL free blocks and also leaves lots of small blocks.

First-fit: Choose first block that is big enough. Fast, but potentially more wasted space. Also
concentrates small blocks at the beginning.

Next-fit: Same as first-fit, but start search at last memory allocated instead of start of free list.
Does not have concentration of small blocks that first-fit does.

Memory Leaks:

You have a limited amount of space to use for both the stack and the heap and you don’t want
to waste any of it. Dynamically allocated memory is persistent, so it remains in the heap even if you get
rid of/change the pointer that pointed to it. Once this happens, the allocated memory essentially
becomes unusable because you can’t point to it and malloc thinks you’re still using it.


jhsia
Cross-Out


Make sure you call Free for every instance you call malloc!

Check: For the singly-linked list implementation below, fill out free 11, which frees all of the memory
allocated for the linked list. Try writing both a recursive and an iterative solution.
struct Il _node {

struct Il _node *next;
int *element;

}

void free ll(struct Il _node *list) {
/* YOUR CODE HERE */
}

What happens if element in the struct is an integer instead of a pointer? Does your code
become easier or more complicated?



