Discussion #2: C Basics

Written by Justin Hsia (6/22/2011)

Note: All the nitty-gritty details can be found in K&R, so | will only make points | feel are worthwhile
here before referring you to the appropriate book pages.

Note: For programming, | believe in learning by doing. The answers to the exercises below are not
given because you can easily code them up to test/verify. | encourage you to consult with other
students as well, since coming up with a solution does not mean that is it the best solution. Also
knowing why you get a particular outcome is more important than the outcome itself.

Generic C program layout:

#include <system_ files>
#include “local_files”

#define macro_name macro_expr

/* declare functions */
/* declare external variables and structs */

int main(int argc, char *argv[]) {
/* the innards */

}

/* define other functions */

This exact structure is not required, but good formatting practice. Individual parts explained below.

The C Preprocessor

Runs through your code first and makes SUBSTITUTIONS ONLY. Does not create any variables
or allocate memory or anything like that. C preprocessor commands are started with the ‘4’ symbol.

#include filename — dumps contents of a file directly into your code. Filename does not have to have
the extension .h, but good practice to signify header files. In general, header files (.h) should
contain only declarations and code files (.c) should contain definitions. If a known system file
(see K&R Appendix B), surround with <filename>. If a local file, surround with “filename”.

#define name replacement_text — does a macro substitution. Finds token name in your code and
replaces text EXACTLY AS IS with replacement_text. Not actual variables, so cannot assign to.
Can do “function-like” macros such as:

#define max(A,B) ((A)>(B)?(A):(B))

Check: What is the value of resul t?

#define NUM 44-1
result = NUM*2;

The Innards: Variables

Variable types: char and int are integral types
float and double are floating types (exponential and decimal numbers)

Can convert/typecast char to int to float to double without loss, but not the other way around.
Variable qualifiers: The “adjectives” to the variable type “nouns.”

e unsigned (p.36) < const (p.40) = short/long (p. 36) - static (p. 83)
The Innards: Basic Operators
For precedence/order of execution, see Table 2-1 on p. 53.

Arithmetic: = + - * / Y% 4+ —- Last three are modulus, increment, decrement.
Comparison: == I= > < >= <= Will return 1 (true) or 0 (false).

Check: Write the function int nonneg(int n) thatreturns 1 if nis non-negative and O if n is
negative. Use only a single statement (one semi-colon).

Check: Again using a single statement, rewrite the above function into int sign(int n), which
instead returns -1 if n is negative. Use only the operators above and only integer constants.

Logical: T && || Use to modify/combine comparisons.

Check: What is the result of int result = 1(3 > 5) + 3*(35 == “#7)?

Bitwise: ~ & | N << > Useful for masking or selecting bits.

Check: Write the function int getbit(int n, int p), which returns the p’th bit in the integer n,
counting from the right. You can assume the integer 1 is represented by all zeros with the
rightmost bit set to 1.

Compound: Let ‘®’ be an operator in the set {+,-,*,7/,%,&,] ,",<<,>>}.
Then a e= b isequivalenttoa = a e b.

Check: What is the result of the following block of code?

int i = 1;
I <<= 3:
i ~= 15;
1 %= 9;

The Innards: Control Flow

Statements: if-else if-else (p.55-58) switch (p.58-59) conditional (p.51-52)
Loops: for (p. 60) while (p. 60) do-while (p. 63-64)
Use break to exit a loop or switch statement, and continue to skip directly to the next loop
iteration.

Check: Assume you can call the int sign(int n) function defined above. Write the function Int
mod(int n,int m) that returns the equivalent of n%m usinga for loop with an empty
body and a return statement. It should handle both positive and negative values of n.

Check: Write the function void printHexDigit(int d) that prints the hex digit character
equivalent of the decimal input d between 0 and 15. Use a single statement (one semi-colon).

Extra: See if you can implement printHexDigit as described above as a macro.

Functions
return_type function_name(argument list);

return_type function_name(argument list) {
/* code here */
return expr;

}

The first line above is the function declaration (function prototype) and is only needed if function is
called before it is defined. Not required, but good practice to use exact same argument names in
function prototype. There is no function overloading in C!

Variable scope: If a variable is declared within a function, it “disappears” when that function returns.

Check: What is terrible about the following function?

int *blasphemy(void) {
int xX; return &x;
3

Pass by value: Arguments (and return values) are passed BY VALUE in C. This means that a copy of the
data is stored under the argument name in the function, so changing that value does not affect the
original data at all.

main: When, called program execution always starts in main(), which should return an int. Use
the following argument list to accept command-line arguments:

int main(int argc,char *argv[])

Command-line arguments include the name of the executable that is being run. argv is an array of
character pointers (covered later). Each entry in the array is a pointer to an array of characters for each
command-line argument (everything stored as characters).

Check: Assume a program is run from the UNIX shell with the following command:

$ -/manipulateCommandLine hello 2.56

What would the following expressions evaluate to inside that program?
argc

*argv[O]

*(argv[1]+4)

*argv[2]+1

Structs and typedef

Structs are user-defined collections of variables. A structure definition goes as follows:
struct structure_tag {
typel memberl;

typen membern;
}:
Structure tag: The structure tag is optional and is used to refer to this structure in the future. If you
are only going to create a single instance of this particular structure, then the structure tag may be
unnecessary. In general it’s always best to give a structure tag. This structure type is later used as
struct structure_tag.

Structure members: A structure can hold an arbitrary collection of members of different variable
types, meaning that the size of a structure can vary greatly. The only exception is that a structure
cannot hold an instance of itself (but a pointer of the structure type is okay). Members are accessed
using the operator ‘.’.

Struct variables: Unlike other variable types, structures need to be defined at first. It turns out
that you can combine a structure definition with a variable declaration and even initialization! This can
get a little confusing and long, but the following are all valid:

struct {int x; int y;} var;

Defines a variable var of an unnamed structure type that contains two integers x and y.
struct point {int x; int y;};

Defines the type struct point.

struct point {int x; int y;} ptl;

Defines the variable ptl of type struct point

struct point {int x; int y;} ptl = {1,2};

Defines the variable ptl of type struct point and initializes it to ptl.x=1and pt2.y=2.

For clarity, most structure definitions are spaced like the generic form shown at the top of this section.

These two-word variable names struct structure_ tag are a bit cumbersome, so we often combine
them with typedef, which allows you to create new data type names such as:

typedef unsigned int uint; New variable name uint refers to unsigned int.

For structs, combine typedef with struct definition to make a more manageable variable type:

typedef struct point {
int x;
int y;

} Point;

Point ptl = {1,2};

Check: What's wrong with the following code?
struct {int vall; int val2;} mystruct;
struct mystruct sl = {7,13};

