Discussion #1: Number Representation
Written by Justin Hsia (6/20/2011)

Base Representation:

A number is represented in a particular base by a series of digits. Each digit is typically an
alphanumeric character and represents a number between 0 and base — 1. We are taught to think in
base 10 (decimal); computers think in base 2 (binary). In decimal, the value of the it" digit d in base b is
d X b'™1. The power is i — 1 because the first digit (i = 1) is for b = 1. Alternatively, you can use
d x b' if you declare the right-most digit to be the 0t" digit. The full number is the sum of all of the
digits. In the following examples, the subscript after a number is the base it is being represented in (no
subscript means base 10):

1011y, = 23 4+21 420 = 11lien =1 X 3242x30= 12¢hree
—12344,0 = —1 x 53 —2x 52 -3 x5! —4 x50 = —194

Though not shown, all numbers can be assumed to have an infinite number of leading zeros,
which would appear to the left of all the shown digits.

Note: We're still in the realm of pure math here, so the negative sign sits separately from the number
and does its own thing.

Computer Bases:

Computers store everything as either high (1) or low (0) electronic signals, so they naturally use
base two (binary or bin for short). Each binary digit is called a bit. Collections of bits can be combined
into bases that are powers of two. Commonly used collections are three bits (base 23 = base 8, which is
called octal or oct) and four bits (base 2# = base 16, which is called hexadecimal or hex). P&H uses the
aforementioned subscript notation for bases, in C we use the following prefixes:

bin - ‘Ob’, oct- ‘0, hex — ‘Ox’
Decimal | Binary | Octal | Hexadecimal Decimal | Binary | Octal | Hexadecimal
0 0b0000 | 000 0x0 8 0b1000 | 010 0x8
1 0b0001 | 001 0x1 9 0b1001 | 011 0x9
2 0b0010 | 002 0x2 10 0b1010 | 012 Oxa
3 0b0011 | 003 0x3 11 Ob1011 | 013 Oxb
4 0b0100 | 004 0x4 12 0b1100 | 014 Oxc
5 0b0101 | 005 0x5 13 0b1101 | 015 Oxd
6 0b0110 | 006 0x6 14 0b1110 | 016 Oxe
7 0Ob0111 | 007 0ox7 15 Ob1111 | 017 Oxf




Signed Numbers:

Now we get into the practical implementation of numbers on computers. We need some way of

representing both positive and negative numbers with just 0’s and 1’s. We have the following number

representations, which define how we interpret collections of bits on a computer into numbers. For the

following table, assume we are looking at a collection of i bits. The left-most bit is called the most
significant bit (MSB) and the right-most bit is called the least-significant bit (LSB).

Unsigned Sign & magnitude | 1’s complement 2’s complement
Most (+) # 2t —1 271 -1 271 -1 271 -1
Most (+) # (bin) 0b111.1 0b011..1 0b011.1 0b011..1
Increment (+) # +1 +1 +1 +1
Most (—) # 0 —(2i1—1) —(2i1—1) —2i-1
Most (—) # (bin) 0b000..0 Obl11..1 0b100..0 0b100..0
Increment (—) # N/A -1 +1 +1
Zero (bin) 0b000..0 +0 = 0b000..0 +0 = 0b000..0 0 = 0b000..0
-0 = 0b100..0 -0 = Obl111.1
Negation Doesn’t do Flip the sign bit Flip all of the bits Flip all of the bits
procedure negative #s (MSB) and add 1
Sign extension Add leading zeros | Add leading zeros, | Copy old MSB into | Copy old MSB into
move old MSB to leading bits leading bits
new MSB

General things we like in our number representation:

e Having about equal positive and negative numbers (unsigned fails this)

e Zerois represented with all zero bits

e Having only one zero (sign & magnitude and 1’s complement fail this)

e Incrementing positive and negative numbers the same way (sign & magnitude fails this)

Because of this, 2’s complement is now used ubiquitously. Unsigned is useful in certain cases and still

allowed if specially declared.

Note:

Although not specifically designed to be this way, the MSB in a 1’s complement or 2’s

complement number can still be thought of as a sign bit.

Powers of Two

With the rapid growth of computing, we often need to specify very large powers of 2. There are a very
nice set of prefixes to allow us to do this rapidly!

Note: The standard prefixes such as kilo-, mega-, and giga- mean different things in different contexts.
In the SI system, they mean powers of 103 = 1000. When talking about computer-related
quantities, they often refer to powers of 2% = 1024. To avoid this confusion, a relatively

recent (1999) set of prefixes have been defined to unambiguously refer to powers of 1024.



The following table is taken from http://en.wikipedia.org/wiki/Binary_prefix:

Prefixes for bit and byte multiples

Decimal (SI) Binary (IEC)
Value | Symbol | Full Value | Symbol | Full
1000 k kilo 1024 Ki kibi
1000? M mega | 1024’ Mi mebi
1000° G giga | 1024° Gi gibi
1000* T tera | 1024° Ti tebi
1000° P peta | 1024° Pi pebi
1000° E exa 1024° Ei exbi
1000’ Z zetta | 1024’ Zi zebi
10008 Y yotta | 1024% Yi yobi

The names come from shortened versions of the original Sl prefixes and “bi” is short for “binary,” but
pronounced “bee.”

Because the binary prefixes are powers of 219, we can convert as follows:

2XY means
Y=0 = 1 X=0 = 0
Y=1 = 2 X=1 = Kkibi
Y=2 = 4 X=2 = mebi
Y=3 = 8 X=3 = gibi
Y=4 = 16 X=4 = tebi
Y=5 = 32 + X=5 = pebi _I_ bits/bytes
Y=6 = 64 X=6 = exbi
Y=7 = 128 X=7 = zebi
Y=8 = 256 X=8 = yobi
Y=9 = 512
Examples: 233 bits is 8 gibibits!

To hold 13.2 TiB of memory, you would need a 44-bit address space (2** = 16 TiB).

For possible mnemonics to help you remember the order of these prefixes, see:
http://inst.eecs.berkeley.edu/~cs61c/fa06/mnem.html

Or use one of the ones we came up with in discussion!



