

CS 61C Spring 2010 TA: Long Wei
Section 115/6 Week 3 – Structs, etc cs61c-te@imail.eecs.berkeley.edu

1. We want to add an inventory system to a text adventure game so that the player can
collect items. First, we’ll implement a bag data structure that holds items in a linked list.
Each item_t has an associated weight, and each bag_t has a max_weight that determines
its holding capacity (see the definitions below). In the left text area for item_node_t,
define the necessary data type to serve as the nodes in a linked list of items, and in the
right text area, add any necessary fields to the bag_t definition.

typedef struct item {
 int weight;
 // other fields not shown
} item_t;

typedef struct item_node {

// (a) FILL IN HERE

} item_node_t;

c) Complete the add_item() function, which should add item into bag only if adding
the item would not cause the weight of the bag contents to exceed the bag’s max_weight.
The function should return 0 if the item could not be added, or 1 if it succeeded. Be sure
to update the bag’s current_weight. You do not need to check if malloc() returns
NULL. Insert the new item into the list wherever you wish.
int add_item(item_t *item, bag_t *bag) {

if (
__) {
 return 0;
 }
 item_node_t *new_node =
__

// Add more code below…

 return 1;
}

 (d) Finally, we want an empty_bag() function that frees the bag’s linked list but NOT
the memory of the items themselves and NOT the bag itself. The bag should then be
“reset”, ready for add_item. Assume that the operating system immediately fills any
freed memory with garbage. Fill in the functions below.

typedef struct bag {
int max_weight;
int current_weight;
// add other fields necessary
// (b) FILL IN HERE

} bag_t;

CS 61C Spring 2010 TA: Long Wei
Section 115/6 Week 3 – Structs, etc cs61c-te@imail.eecs.berkeley.edu

void empty_bag(bag_t *bag) {
 free_contents(_________________
);
 // FILL IN HERE

}

void free_contents(____________
) {
 // FILL IN HERE

}

(e) Now suppose that we care about the order of items in our bag. However, because
we’re clumsy, the only possible way for us to rearrange items is to reverse their order in
the list.
void reverse_list(bag_t *bag) {

}

2. Questions (a) and (b) refer to the C code
to the right.

a) In which memory sections (code, static,
heap, stack) do the following reside?

arg _____________ arr _____________ *str _____________ val

b) Name a C operation that would treat arr and ptr differently:

c) Which of the best-, first-, next-fit schemes would succeed for all 5 of the following
sequence of malloc and free requests on a malloc-able region of memory only 8 bytes
long? Circle those that would and show the resulting contents of memory for each one.
E.g., After the “a=malloc(4)” call, all schemes should have the leftmost 4 boxes labeled
“a”.

a = malloc(4); b = malloc(1); free(a); c = malloc(3); d = malloc(4);

#define val 16
char arr[] = "foo";
void foo(int arg){

char *str = (char *) malloc (val);
 char *ptr = arr;
}

CS 61C Spring 2010 TA: Long Wei
Section 115/6 Week 3 – Structs, etc cs61c-te@imail.eecs.berkeley.edu

 best-fit first-fit next-fit

Bonus: You have five jars of pills. All the pills in one jar only are "contaminated."
The only way to tell which pills are contaminated is by weight. A regular pill weighs
10 grams; a contaminated pill is 9 grams. You are given a scale and allowed to make
just one measurement with it How do you tell which jar is contaminated?

