TA:	
cs61c-t	@imail.eecs

\sim	•		\mathbf{r}		•	
Oı	114	• Z	ĸ	AL	716	XXC
\mathbf{v}	uц	·N	1.			~ * *

N bits represent 2^N things:

How many bits do you need to represent 768 things?

Kind men give terminal pets extra zebra yolk: $2^{67} =$

With 8 bits, what are the bit patterns for the following? For the last row, what is the decimal value of the given bit pattern?

	Unsigned	Sign & Magnitude	One's Complement	Two's Complement
-1				
MAX				
MIN				
0x83				

In general, with N bits the m	ax/min for unsigned is _	, and for two's
complement the max/min is	·	

What are the advantages and disadvantages of each integer representation?

Complete the following function <code>convert()</code> that takes an unsigned integer as an argument, and returns it's value when interpreted as a sign and magnitude number:

```
int convert(unsigned int signMag){
```

```
C details
```

}

```
int* p1, p2, p3, p4;
```

Did I just declare four pointers?

```
if ((5/4) * 100 == 125) printf("C can do math!\n"); Did it print?
```

TA:

Pointers

Writing the function swap and complete its call.

```
int foo = 5;
int baz = 42;
swap(     );
printf("foo is %d, baz is %d\n", foo, baz);
/* foo is 42, baz is 5 */
```

What is the output of the following program given this snapshot of memory?

		$ \upsilon$ 1	- 0	\mathcal{C}		1				
Variable (if any)	a	b	С	р				Х	У	
Address	 171	172	173	174	175	176	177	 655	656	
Initial Value	15	19	-5	171	0	255	4	-1	8	

```
int main(int argc, char * argv[]){
                                           int foo (int x, int * y) {
     int a = 3, b = 144, c = 170;
                                               *y = -12;
                                                 return x + (int) y;
     int *p;
     printf("%d, %d, %d\n", *p, p, &p);
     p = (int *) foo(a, &c);
     printf("%d, %d, %d\n", *p, p, &p);
                                           void bar (int * x, int * y) {
     bar(&a, &b);
                                                 *x = *y;
     printf("%d, %d, %d\n", a, b, c);
                                                 *y = (int) \&y;
     return 0;
}
```

Bonus Question

What does this function do?

```
int mystery (unsigned int n) {
  int count = 8 * sizeof(int);
  n ^= (unsigned int) - 1;
  while (n) {
    count--;
    n &= (n - 1);
  }
  return count;
}
```