

CS 61C Spring 2010 TA: Long Wei
Section 115/6 Week 11 – Pipelining cs61c-tj@imail.eecs.berkeley.edu

Quick Review
Convert the truth table in the exercise below into
a reduced sum of products Boolean expression.

Programmable Logic Arrays
It is cumbersome to build a custom circuit out of individual gates; so programmable logic
components can be configured to implement arbitrary logic, and yet can still be
manufactured as standard components. PLAs directly implement sum of products
expressions, making them very good for control implementations. Field Programmable
Gate Arrays (FPGAs) are more advanced versions that can be reprogrammed and are in
general cooler (internal registers, etc).

PLA Exercise
Draw in wires in the diagram that implement the following truth table:
ABC F
000 0101
001 1000
010 0000
011 0010
100 1111
101 1001
110 1111
111 1111

Pipelining
Any process that goes through a series of distinct steps can be made more efficient
through pipelining. The basic idea is to handle multiple tasks in parallel (at the same
time) in order to make full use of your resources (washing machines, ALUs, etc).

Latency – the time it takes to process a single task completely (measured in seconds)
Throughput – the total amount of tasks completed in a period of time (measured in tasks
per second)

Pipelining improves total throughput, not the latency of an individual instruction. This
means that a single instruction will take the same amount of time or even longer, but over
a longer period of time a pipelined processor can get more done.

CS 61C Spring 2010 TA: Long Wei
Section 115/6 Week 11 – Pipelining cs61c-tj@imail.eecs.berkeley.edu

MIPS Pipelining
MIPS, keeping with its simplicity, is typically implemented with a 5-stage pipeline (as
long as the ISA is maintained it could implemented in any way)
The five MIPS pipeline stages:

* Instruction Fetch (IF) - Computes the next PC, and requests the next instruction
from Memory

* Instruction Decode (ID) - Reads the registers, and starts to set the control signals
based on the instruction

* Execute (EX) - Does the actual computation specified by the operation (includes
computing the memory address for memory instructions)

* Memory (MEM) - Performs the needed operation from memory - reads for load
instructions and writes for store instructions

* Write Back (WB) - Writes back the results of the operation to the Register File

Hazards
Structural Hazards – Hazards that occur due to competition for the same resource
(register file read vs. write back, instruction fetch vs. data read). These are solved by
caching and clever register timing.
Control Hazards – Hazards that occur due to non-sequential instructions (jumps and
branches). These cannot be solved completely by forwarding, so we’re forced to
introduce a branch-delay slot.
Data Hazards – Hazards that occur due to data dependencies (instruction 2 requires the
result of instruction 1). These are mostly solved by forwarding, but lw still requires a
bubble.

Pipelining Exercises
Suppose you’ve designed a MIPS processor implementation in which the stages take the
following lengths of time: IF=20ns, ID=10ns, EX=20ns, MEM=35ns, WB=10ns. What is
the minimum clock period for which your processor functions properly? Where should
the bulk of your R&D budget go for the next generation of processors?

Your friend tells you that his processor design is 10x better than yours, since it has 50
pipeline stages to your 5. Is he right? (This is intentionally vague)

Rewrite the following program to minimize hazards (assume the cleverest HW possible):
Find: lbu $t0, 0($a0)
 addi $a0, $a0, 1
 bne $t0, $a1, Find
 nop
 add $v0, $0, $0
Loop: addi $v0, $v0, 1
 addi $t1, $a0, 1
 lbu $t0, 0($t1)
 sb $t0, 0($a0)
 addi $a0, $a0, 1
 bne $t0, $0, Loop
 nop
 jr $ra

