
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 34 – Virtual Memory II
 2010-04-16

Researchers at Stanford have developed
“nanoscale single-mode LED”, which
can transmit chip-to-chip data at 10 Gbs
(10x what is currently used) at 1/1000th
the energy. Pretty cool! (get it?) J

Lecturer SOE
Dan Garcia

http://news.stanford.edu/news/2011/november/
data-transmission-breakthrough-111511.html

CS61C L34 Virtual Memory II (2) Garcia, Fall 2011 © UCB

Review
§  Next level in the memory hierarchy:

ú  Provides program with illusion of a very large main
memory:

ú  Working set of “pages” reside in main memory - others
reside on disk.

§  Also allows OS to share memory, protect
programs from each other

§  Today, more important for protection vs. just
another level of memory hierarchy

§  Each process thinks it has all the memory to itself
§  (Historically, it predates caches)

CS61C L34 Virtual Memory II (3) Garcia, Fall 2011 © UCB

Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far {

{

This
week:
Virtual
Memory

Review: View of the Memory Hierarchy

CS61C L34 Virtual Memory II (4) Garcia, Fall 2011 © UCB

§  Divide into equal sized
chunks (about 4 KB - 8 KB)

§  Any chunk of Virtual Memory
assigned to any chuck of Physical
Memory (“page”)

0"

Physical Memory"

∞"Virtual Memory"

Code"

Static"

Heap"

Stack"

64 MB"

Mapping Virtual Memory to Physical Memory

0"

CS61C L34 Virtual Memory II (5) Garcia, Fall 2011 © UCB

0"

∞"

OS"

User A"

User B"

User C"

$base "

$base+
$bound "

• Want:
• discontinuous mapping
• Process size >> mem

• Addition not enough!

⇒ use Indirection!

Enough space for User D,
but discontinuous
(“fragmentation problem”)

Another Model: Base and Bound Reg

CS61C L34 Virtual Memory II (6) Garcia, Fall 2011 © UCB

Paging Organization (assume 32B pages)

Addr
Trans
MAP

Page is unit
of mapping

Page also unit of
transfer from disk to
physical memory

page 0 32B
32B

32B

00000000!

00100000!

11100000!

Virtual
Memory

Virtual
Address

page 1

page 7

32B 01000000!page 2

...

page 0

Physical
Address

Physical
Memory

32B
32B

32B

page 1

page 3
...

0000000!

0100000!

1100000!

CS61C L34 Virtual Memory II (7) Garcia, Fall 2011 © UCB

Virtual Memory Mapping Function
§  Cannot have simple function to predict arbitrary

mapping
§  Use table lookup of mappings

§  Use table lookup (“Page Table”) for mappings:
Page number is index

§  Virtual Memory Mapping Function
ú  Physical Offset = Virtual Offset
ú  Physical Page Number = PageTable[Virtual Page Number]
(P.P.N. also called “Page Frame”)

Page Number Offset

CS61C L34 Virtual Memory II (8) Garcia, Fall 2011 © UCB

Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into
page
table

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

offset"PPN"

CS61C L34 Virtual Memory II (9) Garcia, Fall 2011 © UCB

Page Table
§  A page table is an operating system structure

which contains the mapping of virtual
addresses to physical locations
ú  There are several different ways, all up to the

operating system, to keep this data around

§  Each process running in the operating system
has its own page table
ú  “State” of process is PC, all registers, plus page table
ú  OS changes page tables by changing contents of

Page Table Base Register

CS61C L34 Virtual Memory II (10) Garcia, Fall 2011 © UCB

Requirements revisited
§  Remember the motivation for VM:
§  Sharing memory with protection

ú  Different physical pages can be allocated to different
processes (sharing)

ú  A process can only touch pages in its own page
table (protection)

§  Separate address spaces
ú  Since programs work only with virtual addresses,

different programs can have different data/code at
the same address!

§  What about the memory hierarchy?

CS61C L34 Virtual Memory II (11) Garcia, Fall 2011 © UCB

Page Table Entry (PTE) Format
§  Contains either Physical Page Number or

indication not in Main Memory
§  OS maps to disk if Not Valid (V = 0)

§  If valid, also check if have permission to use
page: Access Rights (A.R.) may be Read Only,
Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS61C L34 Virtual Memory II (12) Garcia, Fall 2011 © UCB

Paging/Virtual Memory Multiple Processes
User B:  

Virtual Memory"
∞	

Code"

Static"

Heap"

Stack"

0"
Code"

Static"

Heap"

Stack"

A "
Page"
Table"

B "
Page"
Table"

User A:  
Virtual Memory"
∞	

0"
0"

Physical"
 Memory"

64 MB"

CS61C L34 Virtual Memory II (13) Garcia, Fall 2011 © UCB

Comparing the 2 levels of hierarchy
Cache version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative

Direct Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

Write Thru or Back Write Back

CS61C L34 Virtual Memory II (14) Garcia, Fall 2011 © UCB

Notes on Page Table
§  Solves Fragmentation problem: all chunks

same size, so all holes can be used
§  OS must reserve “Swap Space” on disk

for each process
§  To grow a process, ask Operating System

ú  If unused pages, OS uses them first
ú  If not, OS swaps some old pages to disk
ú  (Least Recently Used to pick pages to swap)

§  Each process has own Page Table
§  Will add details, but Page Table is essence of

Virtual Memory

CS61C L34 Virtual Memory II (15) Garcia, Fall 2011 © UCB

§  A program’s address space
contains 4 regions:
ú  stack: local variables, grows

downward
ú  heap: space requested for

pointers via malloc() ;
resizes dynamically, grows
upward

ú  static data: variables declared
outside main, does not grow or
shrink

ú  code: loaded when program
starts, does not change

code"
static data"
heap"

stack"

For now, OS somehow
prevents accesses between stack

and heap (gray hash lines).

~ FFFF FFFFhex!

~ 0hex!

Why would a process need to “grow”?

CS61C L34 Virtual Memory II (16) Garcia, Fall 2011 © UCB

Virtual Memory Problem #1
§  Map every address ⇒ 1 indirection via Page

Table in memory per virtual address ⇒ 1 virtual
memory accesses =
2 physical memory accesses ⇒ SLOW!

§  Observation: since locality in pages of data, there
must be locality in virtual address translations of
those pages

§  Since small is fast, why not use a small cache of
virtual to physical address translations to make
translation fast?

§  For historical reasons, cache is called a
Translation Lookaside Buffer, or TLB

CS61C L34 Virtual Memory II (17) Garcia, Fall 2011 © UCB

Translation Look-Aside Buffers (TLBs)
§  TLBs usually small, typically 128 - 256 entries
§  Like any other cache, the TLB can be direct

mapped, set associative, or fully associative

Processor TLB
Lookup Cache Main

Memory

VA PA
miss

hit data
Trans-
lation

hit

miss

On TLB miss, get page table entry from main memory

CS61C L34 Virtual Memory II (18) Garcia, Fall 2011 © UCB

§  Book title like virtual address
§  Library of Congress call number like physical

address
§  Card catalogue like page table, mapping

from book title to call #
§  On card for book, in local library vs. in

another branch like valid bit indicating in
main memory vs. on disk

§  On card, available for 2-hour in library use
(vs. 2-week checkout) like access rights

Another Analogy

CS61C L34 Virtual Memory II (19) Garcia, Fall 2011 © UCB

1)  Locality is important yet different for cache and
virtual memory (VM): temporal locality for caches
but spatial locality for VM

2)  VM helps both with security and cost

Peer Instruction

 12
a) FF
b) FT
c) TF
d) TT

CS61C L34 Virtual Memory II (20) Garcia, Fall 2011 © UCB

1)  Locality is important yet different for cache and
virtual memory (VM): temporal locality for caches
but spatial locality for VM

2)  VM helps both with security and cost

F A L S E
1. No. Both for VM and cache

2. Yes. Protection and
 a bit smaller memory

T R U E

Peer Instruction Answer

 12
a) FF
b) FT
c) TF
d) TT

CS61C L34 Virtual Memory II (21) Garcia, Fall 2011 © UCB

And in conclusion…
§  Manage memory to disk? Treat as cache

ú  Included protection as bonus, now critical
ú  Use Page Table of mappings for each user

vs. tag/data in cache
ú  TLB is cache of Virtual ⇒ Physical addr trans

§  Virtual Memory allows protected sharing of
memory between processes

§  Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

