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Researchers at Stanford have developed 
“nanoscale single-mode LED”, which 
can transmit chip-to-chip data at 10 Gbs 
(10x what is currently used) at 1/1000th 
the energy.  Pretty cool! (get it?) J 

Lecturer SOE 
Dan Garcia 

http://news.stanford.edu/news/2011/november/
data-transmission-breakthrough-111511.html 
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Review 
§  Next level in the memory hierarchy: 

ú  Provides program with illusion of a very large main 
memory: 

ú  Working set of “pages” reside in main memory - others 
reside on disk. 

§  Also allows OS to share memory, protect 
programs from each other 

§  Today, more important for protection vs. just 
another level of memory hierarchy 

§  Each process thinks it has all the memory to itself 
§  (Historically, it predates caches) 
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§  Divide into equal sized 
chunks (about 4 KB - 8 KB) 

§  Any chunk of Virtual Memory 
assigned to any chuck of Physical 
Memory (“page”) 

0"

Physical Memory"

∞"Virtual Memory"

Code"

Static"

Heap"

Stack"

64 MB"

Mapping Virtual Memory to Physical Memory  

0"
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0"

∞"

OS"

User A"

User B"

User C"

$base "

$base+ 
$bound "

• Want:  
• discontinuous mapping 
• Process size >> mem 

• Addition not enough! 

⇒ use Indirection! 

Enough space for User D, 
but discontinuous  
(“fragmentation problem”)  

Another Model: Base and Bound Reg 
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Paging Organization (assume 32B pages) 

Addr 
Trans 
MAP 

Page is unit  
of mapping 

Page also unit of 
transfer from disk to 
physical memory 
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Virtual Memory Mapping Function 
§  Cannot have simple function to predict arbitrary 

mapping 
§  Use table lookup of mappings 

§  Use table lookup (“Page Table”) for mappings: 
Page number is index 

§  Virtual Memory Mapping Function 
ú  Physical Offset = Virtual Offset 
ú  Physical Page Number = PageTable[Virtual Page Number] 
(P.P.N. also called “Page Frame”) 

Page Number         Offset 
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Address Mapping: Page Table 
Virtual Address: 

page no. offset 

Page Table 
Base Reg 

Page Table located in physical memory 

index 
into 
page 
table 

Physical 
Memory 
Address 

Page Table 

Val 
-id 

Access 
Rights 

Physical 
Page 
Address 

. 

V A.R. P. P. A. 

... 

... 

offset"PPN"
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Page Table 
§  A page table is an operating system structure 

which contains the mapping of virtual 
addresses to physical locations 
ú  There are several different ways, all up to the 

operating system, to keep this data around 

§  Each process running in the operating system 
has its own page table 
ú  “State” of process is PC, all registers, plus page table 
ú  OS changes page tables by changing contents of 

Page Table Base Register 
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Requirements revisited 
§  Remember the motivation for VM: 
§  Sharing memory with protection 

ú  Different physical pages can be allocated to different 
processes (sharing) 

ú  A process can only touch pages in its own page 
table (protection) 

§  Separate address spaces 
ú  Since programs work only with virtual addresses, 

different programs can have different data/code at 
the same address! 

§  What about the memory hierarchy? 
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Page Table Entry (PTE) Format 
§  Contains either Physical Page Number or 

indication not in Main Memory 
§  OS maps to disk if Not Valid (V = 0) 

§  If valid, also check if have permission to use 
page: Access Rights (A.R.) may be Read Only, 
Read/Write, Executable 

... 
Page Table 

Val 
-id 

Access 
Rights 

Physical 
Page 
Number 

V A.R. P. P. N. 

V A.R. P. P.N. 

... 

P.T.E. 
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Paging/Virtual Memory Multiple Processes 
User B:  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∞	
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Comparing the 2 levels of hierarchy 
Cache version    Virtual Memory vers. 
Block or Line    Page 
Miss      Page Fault 
Block Size: 32-64B  Page Size: 4K-8KB 
Placement:   Fully Associative 

Direct Mapped,  
N-way Set Associative 

Replacement:    Least Recently Used 
LRU or Random  (LRU) 

Write Thru or Back  Write Back 
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Notes on Page Table 
§  Solves Fragmentation problem: all chunks 

same size, so all holes can be used 
§  OS must reserve “Swap Space” on disk 

for each process 
§  To grow a process, ask Operating System 

ú  If unused pages, OS uses them first 
ú  If not, OS swaps some old pages to disk 
ú  (Least Recently Used to pick pages to swap) 

§  Each process has own Page Table 
§  Will add details, but Page Table is essence of 

Virtual Memory 
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§  A program’s address space 
contains 4 regions: 
ú  stack: local variables, grows 

downward  
ú  heap: space requested for 

pointers via malloc() ; 
resizes dynamically, grows 
upward 

ú  static data: variables declared 
outside main, does not grow or 
shrink 

ú  code: loaded when program 
starts, does not change 

code"
static data"
heap"

stack"

For now, OS somehow 
prevents accesses between stack 

and heap (gray hash lines).  

~ FFFF FFFFhex!

~ 0hex!

Why would a process need to “grow”? 
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Virtual Memory Problem #1 
§  Map every address ⇒ 1 indirection via Page 

Table in memory per virtual address ⇒ 1 virtual 
memory accesses =  
2 physical memory accesses ⇒ SLOW! 

§  Observation: since locality in pages of data, there 
must be locality in virtual address translations of 
those pages 

§  Since small is fast, why not use a small cache of 
virtual to physical address translations to make 
translation fast? 

§  For historical reasons, cache is called a 
Translation Lookaside Buffer, or TLB 
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Translation Look-Aside Buffers (TLBs) 
§  TLBs usually small, typically 128 - 256 entries 
§  Like any other cache, the TLB can be direct 

mapped, set associative, or fully associative 

Processor TLB 
Lookup Cache Main 

Memory 

VA PA 
miss 

hit data 
Trans- 
lation 

hit 

miss 

On TLB miss, get page table entry from main memory 
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§  Book title like virtual address 
§  Library of Congress call number like physical 

address 
§  Card catalogue like page table, mapping 

from book title to call # 
§  On card for book, in local library vs. in 

another branch like valid bit indicating in 
main memory vs. on disk 

§  On card, available for 2-hour in library use 
(vs. 2-week checkout) like access rights 

Another Analogy 
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1)  Locality is important yet different for cache and 
virtual memory (VM): temporal locality for caches 
but spatial locality for VM 

2)  VM helps both with security and cost 

Peer Instruction 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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1)  Locality is important yet different for cache and 
virtual memory (VM): temporal locality for caches 
but spatial locality for VM 

2)  VM helps both with security and cost 

F A L S E 
1. No. Both for VM and cache 

2.   Yes. Protection and 
 a bit smaller memory 

T R U E 

Peer Instruction Answer 

   12 
a) FF 
b) FT 
c) TF 
d) TT 
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And in conclusion… 
§  Manage memory to disk? Treat as cache 

ú  Included protection as bonus, now critical 
ú  Use Page Table of mappings for each user 

vs. tag/data in cache 
ú  TLB is cache of Virtual ⇒ Physical addr trans 

§  Virtual Memory allows protected sharing of 
memory between processes 

§  Spatial Locality means Working Set of Pages 
is all that must be in memory for process to 
run fairly well 


