
inst.eecs.berkeley.edu/~cs61c  
UCB CS61C : Machine Structures

 Lecture 33 – Virtual Memory I

 2011-11-14

8 TB SOLID STATE DRIVE (SSD)!

OCZ has showcased an 8 TB solid
state drive (the biggest HDD is
only 4 TB, they’ve caught up!)
Unfortunately, it’s not released yet
and the price will be astonomical.

Lecturer SOE
Dan Garcia

http://news.softpedia.com/news/OCZ-Showcases-4TB-
and-8TB-SSDs-at-CeBIT-2011-187631.shtml CS61C L33 Virtual Memory I (2) Garcia, Fall 2011 © UCB

Review
§  Pipelining is an important form of ILP
§  Challenges are hazards

ú  Forwarding helps w/many data hazards
ú  Delayed branch helps with control hazard in 5 stage

pipeline
ú  Load delay slot / interlock necessary

§  More aggressive performance:
ú  Longer pipelines
ú  Superscalar
ú  Out-of-order execution
ú  Speculation

SPEC
§  Want to be able to read

and write words on a page
§  Start with a blank journal,

also want to be able to
write anywhere in journal

§  Problem is, only enough
physical memory on
device for 4 pages!

Designing an e-journal in 1970
§  Each page only 32 B

ú  5 bits to specify the byte within
a particular page

ú  The “page offset”

§  4 physical pages

§  What if you had a wireless
connection to a disk that
could hold 8 pages…
ú  What illusion / abstraction

could we provide to the user?

More details on our 1970 e-reader

Content!

0 Dear diary…!

1 Yesterday…!

2 OMG, did u…!

3 CS61C is
great!!

§  We’ll distinguish
ú  “physical” memory

“resident” to the
device
   E.g., 4 pages

ú  “virtual” memory
that the user
should use
   E.g., 8 pages

§  What’s needed to
keep track of
which page is in
memory & where

BINGO! Make them think they have 8!

Physical!

0 Occupy Cal!!

1 Yesterday…!

2 CS61C is
great!!

3 One day…!

Virtual!

0 Dear diary!

1 One day…!

2 Yesterday…!

3

4 OMG, did u…!

5

6 Occupy Cal!!

7 CS61C is
great!!

We need a “page table”

Physical!

0 Occupy Cal!!

1 Yesterday…!

2 CS61C is
great!!

3 One day…!

Virtual!

0 Dear diary!

1 One day…!

2 Yesterday…!

3

4 OMG, did u…!

5

6 Occupy Cal!!

7 CS61C is
great!!

#	
 Frame	
 #	

(physical	
 page)	

Valid	

(resident)	

0!

1! 3! True!

2! 1! True!

3!

4!

5!

6! 0! True!

7! 2! True  
!

Page Table"

CS61C L33 Virtual Memory I (7) Garcia, Fall 2011 © UCB

Let’s see a simulation of our e-journal!

CS61C L33 Virtual Memory I (8) Garcia, Fall 2011 © UCB

Regs

L2 Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Upper Level

Lower Level

Faster

Larger

Cache
Blocks

Thus far {

{
Next:
Virtual
Memory

Another View of the Memory Hierarchy

CS61C L33 Virtual Memory I (9) Garcia, Fall 2011 © UCB

Memory Hierarchy Requirements
§  If Principle of Locality allows caches to offer

(close to) speed of cache memory with size of
DRAM memory, then recursively why not use
at next level to give speed of DRAM memory,
size of Disk memory?

§  While we’re at it, what other things do we
need from our memory system?

CS61C L33 Virtual Memory I (10) Garcia, Fall 2011 © UCB

Memory Hierarchy Requirements
§  Allow multiple processes to simultaneously

occupy memory and provide protection –
don’t let one program read/write memory
from another

§  Address space – give each program the
illusion that it has its own private memory
ú  Suppose code starts at address 0x40000000. But

different processes have different code, both
residing at the same address. So each program has
a different view of memory.

CS61C L33 Virtual Memory I (11) Garcia, Fall 2011 © UCB

Virtual Memory
§  Next level in the memory hierarchy:

ú  Provides program with illusion of a very large main
memory:

ú  Working set of “pages” reside in main memory - others
reside on disk.

§  Also allows OS to share memory, protect
programs from each other

§  Today, more important for protection vs. just
another level of memory hierarchy

§  Each process thinks it has all the memory to itself
§  (Historically, it predates caches)

CS61C L33 Virtual Memory I (12) Garcia, Fall 2011 © UCB

Virtual to Physical Address Translation

§  Each program operates in its own virtual
address space; ~only program running

§  Each is protected from the other
§  OS can decide where each goes in memory
§  Hardware gives virtual ⇒ physical mapping

virtual"
address"

(inst. fetch"
load, store)"

Program"
operates in"
its virtual"
address"
space"

HW"
mapping" physical"

address"
(inst. fetch"
load, store)"

Physical"
memory"

(incl. caches)"

CS61C L33 Virtual Memory I (15) Garcia, Fall 2011 © UCB

§  Divide into equal sized
chunks (about 4 KB - 8 KB)

§  Any chunk of Virtual Memory
assigned to any chuck of Physical
Memory (“page”)

0"

Physical Memory"

∞"Virtual Memory"

Code"

Static"

Heap"

Stack"

64 MB"

Mapping Virtual Memory to Physical Memory

0" CS61C L33 Virtual Memory I (17) Garcia, Fall 2011 © UCB

Virtual Memory Mapping Function
§  Cannot have simple function to predict

arbitrary mapping
§  Use table lookup of mappings

§  Use table lookup (“Page Table”) for

mappings: Page number is index
§  Virtual Memory Mapping Function

ú  Physical Offset = Virtual Offset
ú  Physical Page Number

= PageTable[Virtual Page Number]
(P.P.N. also called “Page Frame”)

Page Number Offset

CS61C L33 Virtual Memory I (18) Garcia, Fall 2011 © UCB

Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

Page Table located in physical memory

index
into

page
table

+

Physical
Memory
Address

Page Table

Val
-id

Access
Rights

Physical
Page
Address

.

V A.R. P. P. A.

...

...

CS61C L33 Virtual Memory I (19) Garcia, Fall 2011 © UCB

Page Table
§  A page table is an operating system structure

which contains the mapping of virtual
addresses to physical locations
ú  There are several different ways, all up to the

operating system, to keep this data around

§  Each process running in the operating system
has its own page table
ú  “State” of process is PC, all registers, plus page table
ú  OS changes page tables by changing contents of

Page Table Base Register

CS61C L33 Virtual Memory I (20) Garcia, Fall 2011 © UCB

Requirements revisited
§  Remember the motivation for VM:
§  Sharing memory with protection

ú  Different physical pages can be allocated to different
processes (sharing)

ú  A process can only touch pages in its own page
table (protection)

§  Separate address spaces
ú  Since programs work only with virtual addresses,

different programs can have different data/code at
the same address!

§  What about the memory hierarchy?

CS61C L33 Virtual Memory I (21) Garcia, Fall 2011 © UCB

Page Table Entry (PTE) Format
§  Contains either Physical Page Number or

indication not in Main Memory
§  OS maps to disk if Not Valid (V = 0)

§  If valid, also check if have permission to use
page: Access Rights (A.R.) may be Read Only,
Read/Write, Executable

...
Page Table

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS61C L33 Virtual Memory I (22) Garcia, Fall 2011 © UCB

Paging/Virtual Memory Multiple Processes
User B:  

Virtual Memory"
∞	

Code"

Static"

Heap"

Stack"

0"
Code"

Static"

Heap"

Stack"

A "
Page"
Table"

B "
Page"
Table"

User A:  
Virtual Memory"
∞	

0"
0"

Physical"
 Memory"

64 MB"

CS61C L33 Virtual Memory I (23) Garcia, Fall 2011 © UCB

Comparing the 2 levels of hierarchy
Cache version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative

Direct Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

Write Thru or Back Write Back

CS61C L33 Virtual Memory I (24) Garcia, Fall 2011 © UCB

Notes on Page Table
§  Solves Fragmentation problem: all chunks

same size, so all holes can be used
§  OS must reserve “Swap Space” on disk

for each process
§  To grow a process, ask Operating System

ú  If unused pages, OS uses them first
ú  If not, OS swaps some old pages to disk
ú  (Least Recently Used to pick pages to swap)

§  Each process has own Page Table
§  Will add details, but Page Table is essence of

Virtual Memory
CS61C L33 Virtual Memory I (25) Garcia, Fall 2011 © UCB

§  A program’s address space
contains 4 regions:
ú  stack: local variables, grows

downward
ú  heap: space requested for

pointers via malloc() ;
resizes dynamically, grows
upward

ú  static data: variables declared
outside main, does not grow or
shrink

ú  code: loaded when program
starts, does not change

code"
static data"
heap"

stack"

For now, OS somehow
prevents accesses between stack

and heap (gray hash lines).

~ FFFF FFFFhex!

~ 0hex!

Why would a process need to “grow”?

CS61C L33 Virtual Memory I (28) Garcia, Fall 2011 © UCB

1)  Locality is important yet different for cache and
virtual memory (VM): temporal locality for caches
but spatial locality for VM

2)  VM helps both with security and cost

Peer Instruction

 12
a) FF
b) FT
c) TF
d) TT

CS61C L33 Virtual Memory I (30) Garcia, Fall 2011 © UCB

And in conclusion…
§  Manage memory to disk? Treat as cache

ú  Included protection as bonus, now critical
ú  Use Page Table of mappings for each user

vs. tag/data in cache
ú  TLB is cache of Virtual ⇒ Physical addr trans

§  Virtual Memory allows protected sharing of
memory between processes

§  Spatial Locality means Working Set of Pages
is all that must be in memory for process to
run fairly well

