11/7/11

61C In the News
Siri outage continues for some

Some iPhone 48 users say Siriis still out of commission, days after it was first reported that
the popular, voice-activated artificially intelligent assistant appeared to be ailing.

Initially, when the iPhone 4S went on sale Oct. 14,
many users couldn't get Siri to work because so
many people were trying at the same time. Siri
needs to go through Apple's cloud-based servers to
work, and Siri's popularity caused a bit of a traffic

jam.
TeCHnO LOG on iz mshbc.com

CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 31: Pipeline Parallelism 2

Instructors:
Mike Franklin

Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/fall

Instruction Level Parallelism (ILP)

* Another parallelism form to go with Request
Level Parallelism and Data Level Parallelism

* RLP —e.g., Warehouse Scale Computing
¢ DLP -e.g., SIMD, Map Reduce
* ILP —e.g., Pipelined instruction Execution

5 stage pipeline => 5 instructions executing
simultaneously, one at each pipeline stage

.

.

You Are Here!

Software Hardware,

Parallel Requests
Assigned to computer Scale
e.g., Search “Katz” Computer

Harness

Pargllel Threads Parslielism &
Assigned to core Achieve High
e, Lookup, Ads  performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time ruction Unit(Si/,/

e.g., Add of 4 pairs of words

Hardware descriptions
All gates functioning in

" Functional _~
X /
Unit(s)

parallel at same time

wm Fall 2011 - Lecture 131
D

4

Pipelined Execution

Ii Representation
[1IFtchlDcd [Exec|Mem] WB |
[IFtchDcd [ExecIMem| WB |
[IFtchlDcd [ExecIMem] WB |
[1IFtchlDcd [ExecIMem] WB |
[IFtchDcd [ExecIMem] WB |

IFtch|Dcd [Exec[Mem]| WB

* Every instruction must take same number of steps, also
called pipeline “stages”, so some will go idle sometimes

Graphical Pipeline Diagrams

d [
I o — —|
ol $5 =] 2 =
S 1> 4 » o6 [
gs ] ® 55
28 [ 2l N g
4 im n| L A
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Write
Fetch Register Read Back

* Use datapath figure below to represent pipeline

[IFtchiDcd {Exec[Mem| WB ]

w e




Graphical Pipeline Representation
(In Reg, right half highlight read, left half write)
Time (clock cycles)

11/7/11

Pipeline Performance
¢ Assume time for stages is
— 100ps for register read or write
— 200ps for other stages
* What is pipelined clock rate?
— Compare pipelined datapath with single-cycle datapath

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
Iw 200ps 100 ps 200ps 200ps 100 ps

sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps
E4H2011 - Lecture #31

n
Load
S
r.
Store
Sub
r
dlor
e
r
Program _
execution . 200 400 600 800 1000 1200 1400 1600 1800
ime
order
(in instructions)
Iw $1,100(80) "N g ay | 0% | pog
Iw $2,200($0) 800 ps nsncton| peg| ALy | D% | g
Iw $3, 300($0) T soops
Program
execution 1o 200 400 600 800 1000 1200 1400
order
(in instructions)
w $1,100(80) "0 "|  [Rea| A | O35, [Reo
Iw §2,200($0) 200 ps | "t |Reg| A | D2 |Reg
w $3, 300(80) 200 ps ™| freo| A | 202 |reg
200ps 200ps 200ps 200ps 200 ps
8UDAL — Lecture 131

Pipeline Speedup

* If all stages are balanced
* i.e., all take the same time
Time between instructions ieined
=Time between instructions
Number of stages
* If not balanced, speedup is less
* Speedup due to increased throughput

« Latency (time for each instruction) does not
decrease

nonpipelined

E3(2011 - Lecture #31 10

Hazards

Situations that prevent starting the next logical
instruction in the next clock cycle
1. Structural hazards
— Required resource is busy (e.g., roommate studying)
2. Data hazard
— Need to wait for previous instruction to complete its
data read/write (e.g., pair of socks in different loads)
3. Control hazard
— Deciding on control action depends on previous

instruction (e.g., how much detergent based on how
clean prior load turns out)

1. Structural Hazards

* Conflict for use of a resource
* In MIPS pipeline with a single memory
— Load/Store requires memory access for data

— Instruction fetch would have to stall for that cycle
* Causes a pipeline “bubble”

* Hence, pipelined datapaths require separate
instruction/data memories
— In reality, provide separate L1 1S and L1 D$




11/7/11

1. Structural Hazard #1: Single Memory
Time (clock cycles)

|

: Load K

t |Instr1

i Instr 2

? Instr 3

fe‘ Instr 4 I K

rRead same memory twice in same clock cycle

1

1. Structural Hazard #2: Registers (1/2)

Time (clock cycles)

"

.

I linstr 1 ]

O |[Instr 2 W

crl Instr 3 ‘I)EV (8 e

‘: Instr 4 | IE

11/7/11

Can we read and write to registers simultaneously?

1. Structural Hazard #2: Registers (2/2)

* Two different solutions have been used:
1) RegFile access is VERY fast: takes less than half
the time of ALU stage
* Write to Registers during first half of each clock cycle

* Read from Registers during second half of each clock
cycle

2) Build RegFile with independent read and write
ports
* Result: can perform Read and Write during
same clock cycle

11/7/11

Data Hazards (1/2)

Consider the following sequence of instructions
add $t0, $tl, $t2
sub $td, $t0 ,$t3
and $t5, $t0 ,$t6
or §$t7, $t0 ,$t8

xor $t9, $t0 ,$t10

Data Hazards (2/2)

* Data-flow backward in time are hazards
Time (clock cycles)

ID/RI

IF
add §t0,t1,$t2] 1s Jfree]
sub $t4,5t0,$t3

and $t5,5t0,$t6

S 0 35 —

or $t7,5t0,5t8

xor $t9,5t0,$t10

=oa=0

Data Hazard Solution: Forwarding
* Forward result frgm one stage to another

IF_:ID/RF

add $t0,8t1,8t2] 1s Jres]F o vs |-
sub $t4,5t0,5t3 !
and $t5,510,$t6
or $t7,50,58

xor $t9,5t0,$t10

“or” hazard solved by register hardware




11/7/11

Data Hazard: Load/Use (1/4)

* Dataflow backwards in time are hazards

IF EID/RIiF
Iw $t0,0(t1) [ ||

sub $t3,5t0,$t2

MEM _WB

Lt

e Can't solve all cases with forwarding

e Must stall instruction dependent on load, then
forward (more hardware)

Data Hazard: Load/Use (2/4)

Hardware stalls pipeline (Called “interlock”)

IF

Iw $t0, 0($t1)
sub $t3,$t0,$t2
and $t5,$t0,5t4

or $t7,5t0,5t6

Not in MIPS: (MIPS = Microprocessor without Interlocked Pipeline Stages)

Data Hazard: Load/Use (3/4)

“

Instruction slot after a load is called
slot”

oad delay

If that instruction uses the result of the load,
then the hardware interlock will stall it for one
cycle.

Alternative: If the compiler puts an unrelated
instruction in that slot, then no stall

Letting the hardware stall the instruction in the
delay slot is equivalent to putting a nop in the
slot (except the latter uses more code space)

Data Hazard: Load/Use (4/4)
WV\?E%H,‘%&MV@'%% g

sub $t3,5t0,$t2
and $t5,$t0,5t4

or $t7,5t0,$t6

Pipelining and ISA Design

* MIPS Instruction Set designed for pipelining
* Allinstructions are 32-bits

— Easier to fetch and decode in one cycle

— x86: 1- to 17-byte instructions

(x86 HW actually translates to internal RISC instructions!)
* Few and regular instruction formats, 2 source register

fields always in same place

— Can decode and read registers in one step
* Memory operands only in Loads and Stores

— Can calculate address 319 stage, access memory 4t" stage
« Alignment of memory operands

— Memory access takes only one cycle

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
« Still working on ID stage of branch
* BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until have new PC value

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

11/7/11 a1l 2011 - Lecture #31




11/7/11

Stall => 2 Bubbles/Clocks Until next time ...
Time (clock cycles) The BIG Picture
II,‘ * Pipelining improves performance by increasing
» " ) . : ]

s |beq IE' D: instruction thro-ugh-put ex-pI0|'ts ILP

t — Executes multiple instructions in parallel

r. |Instr1 Reg — Each instruction has the same latency

¢ Subject to hazards
> Re;

? Instr 2 IE m ¢ — Structure, data, control

d |instr 3 -. I ? ﬂ Reg  Stalls reduce performance

e 1% L — But are required to get correct results

I YInstr 4 Reg IEV * Compiler can arrange code to avoid hazards and stalls

— Requires knowledge of the pipeline structure

. Where do we do the compare for the branch? o R




