11/7/11

isgtw Pt
61C in the NewsO

Is organic computing finally here?
SPOTLIGHT | NOVEMBER 2, 2011 a :

Japanese scientists have made
organic molecules perform parallel
computations like neurons in the
human brain. They created this
promising new approach with a ring-
like molecule called 2,3-dichloro-5,6-
dicyano-p-benzoquinone, or DDQ.

CET
2
3
4

Today, computer chips can process data at 10
trillion (1013) bits per second. But, even though
neurons in the human brain fire at a rate of 100
times per second, the brain still outperforms the
best computers at various tasks. The main
reason being that calculations done by
computer chips happen in isolated pipelines
one at a time.

11/7/11 Fall 2011 - Lecture #30 1

CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 30: Pipeline Parallelism 1

Instructors:
Mike Franklin

Dan Garcia
http://inst.eecs.Berkeley.edu/~cs61c/fall

11/7/11 Fall 2011 - Lectu

Datapath Control Signals

* ExtOp: “zero”, “sign” * MemWr: 1 = write memory
¢ AlUsrc: 0= regB; * MemtoReg: 0= ALU; 1= Mem
1= immed * nPC_sel: 0="“+4";1="br"
« AlUctr: “ADD”, “SUB”, “OR” * RegDst: 0="“rt";1="“rd”
* RegWr: 1 => write register
RegDst Rd Rt ALUctr MemtoReg
mstaddress] (a0 Memwr

nPC_sel & Eqlual @gﬂ{ o 5; F;F

l busw Rw Ra Rb

2 RegFile

clk|

32['wren Adr

}]J Data In Data
32 Memory

imm16——|
16

" ExtOp
11/7/11 Tall 2011 -

Tecure 130

imm16

Where Do Control Signals Come
From?

Instruction<31:0>
Inst B
Memory z T
Adr v
Op Fun

Control

NnPC_sel RegWr RegDst ExtOp ALUSrc AlUctr MemWr MemtoReg

DATA PATH

11/7/11 Fall 2011 - Lecture #30 4

P&H Figure 4.17

Instructon [31-25]
(oetneton B2 o o

instructon (25-21

Fzsc
205222 || instructon r20-1¢)

Instruction
e Reas
po| AcaressRoad| o

instruction || |intructon 1511

55

wite
data_Registers

nstrcon [15-0 18 (sign-) 2
jextend
nstructon [5-0]

11/7/11 Fall 2011 Lecture #30

Dsta

Summary of the Control Signals (1/2)
inst Register Transfer
add R[rd] < R[rs] + R[rt]; PC < PC + 4

ALUsrc=RegB, ALUctr="ADD", RegDst=rd, RegWr, nPC_sel="+4"

sub R[rd] < R[rs] — R[rt]; PC < BC + 4
ALUsrc=RegB, ALUctr="SUB”, RegDst=rd, RegWr, nPC_sel="+4"
ori R(rt] < R[rs] + zero_ext(Imml6); PC < PC + 4

ALUsrc=Im, Extop="2z", ALUctr="OR”, RegDst=rt,RegWr, nPC_sel="+4"

1w R[rt] < MEM[R[rs] + sign ext(Imml6)]; PC < BC + 4
ALUsrc=Im, Extop=“sn”, ALUctr="ADD”, MemtoReg, RegDst=rt, RegWr,
nPC_sel = “+4”
sw MEM[R{rs] + sign_ext(Imml6)] < R[rs]; PC < PC + 4
ALUsrc=Im, Extop="sn”, ALUctr = “ADD”, MemWr, nPC_sel = “+4”
beq if (R[rs] == R[rt]) then PC < PC + sign_ext(Imml6)] || 00

else PC < PC + 4

npC_sel = “br”, ALUctr = “SuB”

11/7/11 Fall 2011 - Lectu

Summary of the Control Signals (2/2)

See _::unc 10 0000| 10 0010) We Don'’t Care :-)
Appendix A op | 00 0000] 00 0000f 00 1101{ 10 0011 10 1011{ 00 0100] 00 0010}
add | sub | ori Iw sw beq | jump
RegDst 1 1 0 0 X X
ALUSrc 0 0 1 1 1 0 x
0 0 0 1 X x x
RegWrite 1 1 1 1 0 0 0
MemWrite 0 0 0 0 1 0 0
nPCsel 0 0 0 0 0 1 ?
Jump 0 0 0 0 0 0 1
ExtOp X X 0 1 1 X X
AlUctr<2:0> | Add or Add_| Add x
31 26 21 16 11 6 0
R-type o rs rt rd shamt funct | add, sub
I-type op | s H rt | immediate | ori, lw, sw, beq

target address | jump

Fall 2011 - Lecture #30

Jtype op |
i

11/7/11

Boolean Exprs for Controller

Instruction<31:0>

M'"“ 3K Op 0-5 are really Instruction bits 26-31
lemory 2l

Adr 2 Func 0-5 are really Instruction bits 0-5
Op Fun

rtype = ~Ops ®* ~Op, * ~Op; * ~Op, * ~Op; * ~OpP,,

ori = ~-op;*® -op,* Op;°* Op,* ~Op; * OP,
1w = Ops * ~Op, * ~Op; * ~Op, * Op; * Op,
sw = Ops*® ~Op;* Op;* ~Op, * OpP; * Opg
beq = ~Ops * ~Opy * ~Op3 * OPp, * ~Op; * ~Op,
jump = ~ops * ~Op, * ~Op; * ~Op, * Op; * ~OP,

add = rtype ¢ func; * ~func, * ~func, * ~func, * ~func, * ~func,

sub = rtype ¢ func, * ~func, * ~func, * ~func, *

func, ¢ ~func,

um How do we implement this in gates? s

Controller Implementation

opcode func

“AND” logic lw

11/7/11 Fall 2011 Lecture #30 9

Boolean Exprs for Controller

RegDst = add + sub

ALUSrc = ori + lw + sw
MemtoReg = lw

RegWrite = add + sub + ori + 1lw
MemWrite = sw

nPCsel = beq

Jump = jump

ExtOp = lw + sw

ALUctr[0] = sub + beq
ALUctr[1l] = ori

(assume ALUctr is 00 ADD, 01 SUB, 10 OR)

How do we implement this in gates?

11/7/11 Fall 2011 - Lecture #30 10

Controller Implementation

opcode func

|— RegDst
add |— ALusre
sub — MemtoReg
ori > RegWrite

“AND” logic [-w | “OR” logic [Memwrite

sw |—> nPCsel

— Jump
beq |— ExtOp
jump [— ALUctr[0]

— ALuctr[1]

11/7/11 Fall 2011 Lecture #30 1

Call home, we’ve made HW/SW contact!

-

High Level Language
Program (e.g., C)

Compiler
Assembly Language
Program (e.g.,MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams|

Administrivia

* Due to time constraints — we can only allow
the use of a maximum of 2 slip days on Project
4.

* Thus, while we always encourage you to get
your work done on time, if you still have 3 slip
days left, you may want to consider using one
prior to project 4

11/7/11

Review: Single-cycle Processor

* Five steps to design a processor:

o

. Analyze instruction set > Processor

(Input
datapath requirements Control

N

Select set of datapath Memory

components & establish
clock methodology Datapath Output

w

. Assemble datapath meeting
the requirements
4. Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.
. Assemble the control logic
* Formulate Logic Equations
* Design Circuits

11/7/11 112011 - Lecture #30 14

w

Single Cycle Performance
* Assume time for actions are
— 100ps for register read or write; 200ps for other events
* Clock rate is?

Single Cycle Performance
¢ Assume time for actions are
— 100ps for register read or write; 200ps for other events
* Clock rate is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write
Iw 200ps 100 ps 200ps 200ps 100 ps

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

Iw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

» What can we do to improve clock rate?
* Will this improve performance as well?
Want increased clock rate to mean faster programs

EAU2A11 - Lecture 130

sw 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

» What can we do to improve clock rate?
 Will this improve performance as well?
Want increased clock rate to mean faster programs

E3(2011 - Lecture #30

Gotta Do Laundry
* Ann, Brian, Cathy, Dave

each have one load of clothes to 6665

wash, dry, fold, and put away
— Washer takes 30 minutes '

— Dryer takes 30 minutes

— “Folder” takes 30 minutes

— “Stasher” takes 30 minutes to put

clothes into drawers k

Sequential Laundry
GIPM 7 8 9 10 11 12 1 2AM

T %'ﬁ'so'solﬁ's_q'sol30'%'5'30'30'%'5'30'30'
a = Time

J089 A& __

k A

I@'K.A

CLGL €t e

=0 Q=0

* Sequential laundry takes
8 hours for 4 loads

11/7/11

Pipelined Laundry

6PM 7 8 9 10 11 12 1 2AM

B o = == A ;
T, 30303030303030 Time
a|l S
S bnd
k| O
|8 A
B 5 A
d
e . .
r * Pipelined laundry takes

3.5 hours for 4 loads!

Pipelining Lessons (1/2)

6PM 7 8 9 * Pipelining doesn’t help latency
| of single task, it helps

T r . Time -
=== | throughput of entire workload

2 30 ?0 30303030 Multiple tasks operating

K 5 E‘ K simultaneously using different

= ° resources
6 =l A Potential d Numb

o) =3 . * Potential speedup = Number

r 6 . pipe stages

d D =) + Time to “fill” pipeline and time

e to “drain” it reduces speedup:

r 2.3X v. 4X in this example

Pipelining Lessons (2/2)

6PM 7 8 9 * Suppose new Washer

- Time takes 20 minutes, new
3030 30 30 30 30'30 Stasher takes 20
= - minutes. How much

faster is pipeline?
* Pipeline rate limited by
slowest pipeline stage
Unbalanced lengths of
pipe stages reduces
speedup

Steps in Executing MIPS
1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers
3) Exec:

Mem-ref: Calculate Address
Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register

Single Cycle Datapath

[4

g gz o z

SE B ? =5

Eo |t 8 qE>

g¢s £

imm

1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Write
Fetch Register Read Back

Pipeline registers

d IQ
o S 2 M -
o G2 | 2 » @5 [
gs] ® 55
28 [2l N g
4 im n| L A
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Write
Fetch Register Read Back

* Need registers between stages
—To hold information produced in previous cycle

More Detailed Pipeline

11/7/11

IF for Load, Store, ...

‘‘‘‘‘‘‘‘‘‘‘‘

3&: I@ﬁ

ID for Load, Store, ...

Instruction

sl T T

> -

EX for Load

sssss

I
Efi £

nstuction (B3 reomtc2.
"oy e
e fe
0
I

G?

MEM for Load

sl 1

H

agll 3&: I@ﬁ

WB for Load — Oops!

el T

&
(N
f
i
!
P A —

mmmmmm

el

Corrected Datapath for Load

11/7/11

So, in conclusion

* You now know how to implement the control
logic for the single-cycle CPU.
— (actually, you already knew it!)
Pipelining improves performance by increasing
instruction throughput: exploits ILP
— Executes multiple instructions in parallel
— Each instruction has the same latency
* Next: hazards in pipelining:

— Structure, data, control

E3(2011 - Lecture #30

