

2011-10-24

Lecturer SOE Dan Garcia

www. cs . berkeley.edu/~ddgarcia
Android Brain on Robots! \Rightarrow
"Half the weight of some robots is due to on-board computers and the batteries needed to power them. This lightweight robot uses an Android phone as the brain, with the phone's gyroscope and camera as sensors, with cloud help!"

www.technologyreview.com/business/38953/page1/ CS61C L25 Representations of Combinational Logic Circuits (1)

Review

- State elements are used to:
- Build memories
- Control the flow of information between other state elements and combinational logic
- D-flip-flops used to build registers
- Clocks tell us when D-flip-flops change
- Setup and Hold times important
- We pipeline long-delay CL for faster clock
- Finite State Machines extremely useful
- Represent states and transitions

Truth Tables

TT Example \#1: 1 iff one (not both) $\mathrm{a}, \mathrm{b}=1$

TT Example \#2: 2-bit adder

TT Example \#3: 32-bit unsigned adder

A	B	C
$000 \ldots 0$	$000 \ldots 0$	$000 \ldots 00$
$000 \ldots 0$	$000 \ldots 1$	$000 \ldots 01$
.	\cdot	\cdot
.	..	\cdot
.	.	Mow
$111 \ldots 1$	$111 \ldots 1$	$111 \ldots 10$

TT Example \#4: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

NOT

Garcia, Fall 2011 © UCB

And vs. Or review - Dan's mnemonic

AND Gate

Symbol

Definition

Garcia, Fall 2011 © UCB

Logic Gates (2/2)

2-input gates extend to n-inputs

- N -input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the \# of 1s at its input is odd \Rightarrow

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1
aracatarame oves			

Truth Table \Rightarrow Gates (e.g., majority circ.)

Truth Table \Rightarrow Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

Administrivia

- The next project will have a performance component, and we will celebrate the winners!
- How many hours on project 2 ?
a) $0-10$
b) $10-20$
c) $30-40$
d) $50-60$
e) $\mathbf{6 0 - 7 0}$

Boolean Algebra

- George Boole, 19 ${ }^{\text {th }}$ Century mathematician
- Developed a mathematical system (algebra) involving logic
- later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
-The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA

Boolean Algebra (e.g., for majority fun.)

$$
\begin{gathered}
y=a \cdot b+a \cdot c+b \cdot c \\
y=a b+a c+b c
\end{gathered}
$$

Boolean Algebra (e.g., for FSM)

PS	Input	NS	Output		
00	0	00	0		
00	1	01	0		
01	0	00	0		
01	1	10	0		
10	0	00	0		
10	1	00	1	\quad	INPUT
:---:					
OS equivalently...					
INPUT					

$$
\mathrm{y}=\mathrm{PS}_{1} \cdot \mathrm{PS}_{0} \cdot \text { INPUT }
$$

BA: Circuit \& Algebraic Simplification

original circuit
equation derived from original circuit
algebraic simplification

BA also great for circuit verification Circ $X=$ Circ Y? use BA to prove!

simplified circuit

Laws of Boolean Algebra

$$
\begin{array}{ccl}
x \cdot \bar{x}=0 & x+\bar{x}=1 & \text { complementarity } \\
x \cdot 0=0 & x+1=1 & \text { laws of 0's and 1's } \\
x \cdot 1=x & x+0=x & \text { identities } \\
x \cdot x=x & x+x=x & \text { Oidempotent law } \\
x \cdot y=y \cdot x & x+y=y+x & \text { commutativity } \\
(x y) z=x(y z) & (x+y)+z=x+(y+z) & \text { associativity } \\
x(y+z)=x y+x z & x+y z=(x+y)(x+z) & \text { distribution } \\
x y+x=x & (x+y) x=x & \text { uniting theorem } \\
\bar{x} y+x=x+y & (\bar{x}+y) x=x y & \text { uniting theorem v.2 } \\
\overline{x \cdot y}=\bar{x}+\bar{y} & \overline{x+y}=\bar{x} \cdot \bar{y} & \text { DeMorgan's Law }
\end{array}
$$

Boolean Algebraic Simplification Example

$$
\begin{aligned}
y & =a b+a+c & & \\
& =a(b+1)+c & & \text { distribution, identity } \\
& =a(1)+c & & \text { law of } 1 \text { 's } \\
& =a+c & & \text { identity }
\end{aligned}
$$

Canonical forms (1/2)

\section*{| | $a b c$ | y |
| :--- | :--- | :--- |
| $\bar{a} \cdot \bar{b} \cdot \bar{c}$ | 000 | 1 |
| $\bar{a} \cdot \bar{b} \cdot c$ | 001 | 1 |
| | 010 | 0 |
| | 011 | 0 |
| | 100 | 1 |
| $a \cdot \bar{b} \cdot \bar{c}$ | | |
| | 101 | 0 |
| $a \cdot b \cdot \bar{c}$ | 110 | 1 |
| | 111 | 0 |\(\quad \begin{aligned} \& Sum-of-products

\&

\& \end{aligned}\)}

Canonical forms (2/2)

$$
\begin{aligned}
y & =\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+a \bar{b} \bar{c}+a b \bar{c} & & \\
& =\bar{a} \bar{b}(\bar{c}+c)+a \bar{c}(\bar{b}+b) & & \text { distribution } \\
& =\bar{a} \bar{b}(1)+a \bar{c}(1) & & \text { complementarity } \\
& =\bar{a} \bar{b}+a \bar{c} & & \text { identity }
\end{aligned}
$$

Peer Instruction

1) $(a+b) \cdot(\bar{a}+b)=b$
2) N -input gates can be thought of cascaded 2 -input gates. I.e., $(a \Delta b c \Delta d \Delta e)=a \Delta(b c \Delta(d \Delta e))$ where Δ is one of AND, OR, XOR, NAND
3) You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT
a: FFF
a: FFT
b: FTF
b: FTT
c: TFF
d: TFT
e: TTF
e: TTT

Peer Instruction Answer

1) $(a+b) \cdot(\bar{a}+b)=a \bar{a}+a b+b \bar{a}+b b=0+b(a+\bar{a})+b=b+b=b$ TRUE
2) (next slide)
3) You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT.
$\operatorname{NOR}(\mathrm{a}, \mathrm{a})=\overline{\mathrm{a}+\mathrm{a}}=\overline{\mathrm{a}}=\overline{\mathrm{a}}$
Using this NOT, can we make a NOR an OR? An And?
TRUE
4) $(a+b) \cdot(\bar{a}+b)=b$
5) N -input gates can be thought of cascaded 2 -input gates. I.e., $(a \Delta b c \Delta d \Delta e)=a \Delta(b c \Delta(d \Delta e))$ where Δ is one of AND, OR, XOR, NAND
6) You can use NOR(s) with clever wiring to simulate AND, OR, \& NOT

123
a: FFF
a: FFT
b: FTF
b: FTT
c: TFF
d: TFT
e: TTF
e: TTT

Peer Instruction Answer (B)

2) N -input gates can be thought of cascaded 2-input gates. I.e.,
$(\mathrm{a} \Delta \mathrm{bc} \Delta \mathrm{d} \Delta \mathrm{e})=\mathrm{a} \Delta(\mathrm{bc} \Delta(\mathrm{d} \Delta \mathrm{e}))$
where Δ is one of AND, OR, XOR, NAND...FALSE
Let's confirm!

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
- You'll see them again in 150, 152 \& 164
- Use this table and techniques we learned to transform from 1 to another

