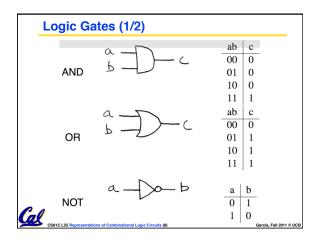
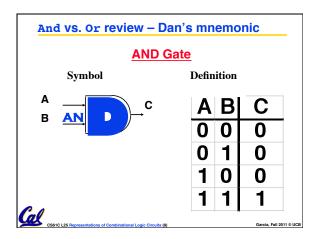
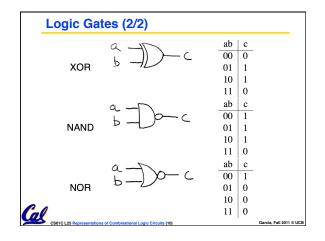


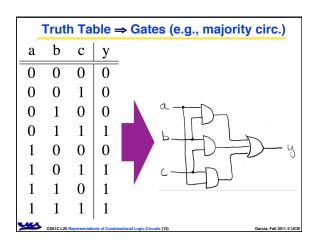
tional Logic Circuits (2)

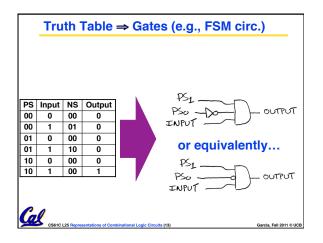

Garcia, Fall 2011 © UCB

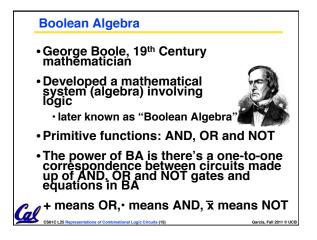


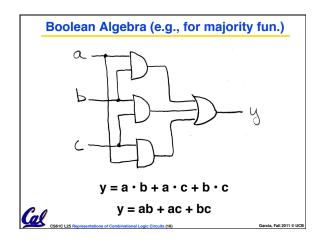

TT Example #1: 1	iff or	ne (not both	ı) a,b=1
а	b	У	
0	0	0	
0	1	1	
1	0 1	1	
1	1	0	
CSSIC L25 Representations of Combinational Logic	Circuits (4)	1	Garcia, Fall 2011 © UC

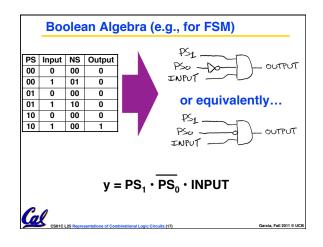
TT Example #3: 32-bit unsigned adder				
Α	В	C		
000 0	000 0	000 00		
000 0	000 1	000 01		
•	•	· How		
•	•	. Many Bows?		
•	•			
111 1	111 1	111 10		
CS61C L25 Representations of Con	abinational Logic Circuits (6)	Garcia, Fall 2011 © UCB		

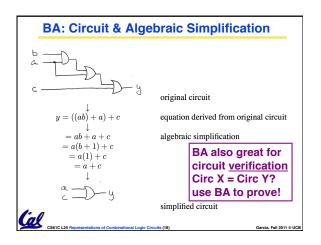

TT Example	#4:	3-in	put	majority circuit
	a	b	c	У
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0		0
	1	0	1	1
	1	1	0	1
Cal	1	1	1	1
CS61C L25 Representations of Co	mbinational l	ogic Circuits	(7)	Garcia, Fall 2011 © UCI

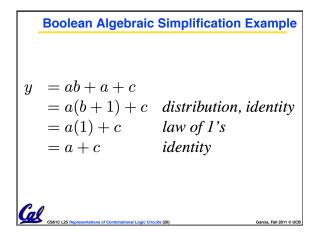


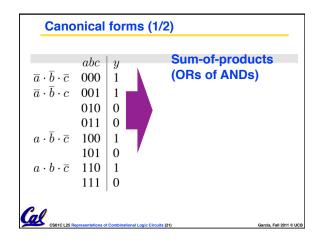


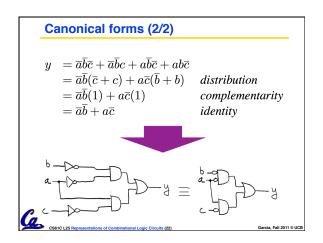


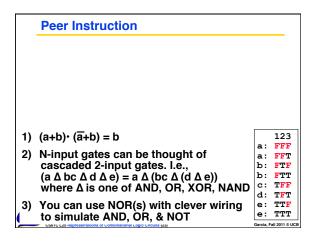

2-input gates extend to n-inputs				
N-input XOR is the	а	b	с	У
 N-input XOR is the only one which isn't so obvious 	0	0	0	0
 It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒ 	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	0
Cal	1	1	1	1
CS61C L25 Representations of Combinational Logic Circuits (11)				Garcia, Fall 2011 © UC

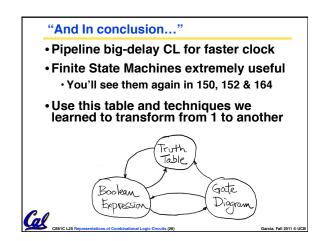











Laws of Bo	oolean Algebra	
(0)	$\begin{array}{c} x+\overline{x}=1\\ x+1=1\\ x+0=x\\ x+x=x\\ (x+y)+z=x+(y+z)\\ x+yz=(x+y)(x+z)\\ (x+y)x=x\\ (x+y)x=x\\ (\overline{x}+y)x=xy\\ \overline{x+y}=\overline{x}\cdot\overline{y} \end{array}$	complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem uniting theorem v.2 DeMorgan's Law
GS61C L25 Representations of	Combinational Looic Circuits (19)	Garcia. Fall 2011 © UC

