

Synchronous Digital Systems

Hardware of a processor, such as the MIPS, is an example of a Synchronous Digital System

Synchronous:

- All operations coordinated by a central clock
 - "Heartbeat" of the system!

Digital:

- All values represented by discrete values
- Electrical signals are treated as 1s and 0s; grouped together to form words

Garcia, Fall 2011 © UCB

Logic Design

- Next several weeks: we'll study how a modern processor is built; starting with basic elements as building blocks
- Why study hardware design?
 - Understand capabilities and limitations of hw in general and processors in particular
 - What processors can do fast and what they can't do fast (avoid slow things if you want your code to run fast!)
 - Background for more in depth hw courses (CS 150, CS 152)
 - There is just so much you can do with standard processors: you may need to design own custom hw for extra performance

CS61C L23 Synchronous Digital Systems (6)

Garcia, Fall 2011 © UCI

Switches: Basic Element of Physical Implementations

· Implementing a simple circuit (arrow shows action if wire changes to "1"):

Close switch (if A is "1" or asserted) and turn on light bulb (Z)

Open switch (if A is "0" or unasserted) and turn off light bulb (Z)

Switches (cont'd)

• Compose switches into more complex ones (Boolean functions):

$$\mathsf{AND} \overset{\mathsf{I}^\mathsf{A}}{\longrightarrow} \overset{\mathsf{I}^\mathsf{B}}{\longrightarrow}$$

Z = A and B

Transistor Networks

- · Modern digital systems designed in CMOS
 - MOS: Metal-Oxide on Semiconductor
 - C for complementary: normally-open and normally-closed switches
- · MOS transistors act as voltage-controlled switches

http://youtu.be/ZaBLiciesOU **MOS Transistors**

- Three terminals: drain, gate, and source
 - Switch action:

if voltage on gate terminal is (some amount) higher/lower than source terminal then conducting path established between drain and source terminals

open when voltage at G is low closes when: voltage(G) > voltage (S) + ε

closed when voltage at G is low opens when: voltage(G) < voltage (S) – ε

MOS Networks what is the relationship hetween x and va (voltage source) 0 volts 3 volts "0" (ground)

Transistor Circuit Rep. vs. Block diagram

- Chips are composed of nothing but transistors and wires.
- Small groups of transistors form useful building blocks.

Block are organized in a hierarchy to build higher-level blocks: ex: adders.

(You can build AND, OR, NOT out of NAND!)

Type of Circuits

- Synchronous Digital Systems are made up of two basic types of circuits:
- Combinational Logic (CL) circuits
 - Our previous adder circuit is an example.
 - · Output is a function of the inputs only.
 - Similar to a pure function in mathematics,
 y = f(x). (No way to store information from one invocation to the next. No side effects)
- State Elements: circuits that store information.

CS61C L20 Synchronous Digital Systems (18)

Garcia, Spring 2010 ® UCI

And in conclusion...

- •ISA is very important abstraction layer
 - · Contract between HW and SW
- Clocks control pulse of our circuits
- Voltages are analog, quantized to 0/1
- · Circuit delays are fact of life
- Two types of circuits:
 - · Stateless Combinational Logic (&,I,~)
 - · State circuits (e.g., registers)

