CS 61C: Great Ideas in Computer
Architecture (Machine Structures)
Lecture 19 — Data Parallelism I

Flynn Taxonomy, SIMD

Instructors:
Michael Franklin

Dan Garcia

http://inst.eecs.Berkeley.edu/~cs61c/Fall

Fall 2011 - Lecture #19

New-School Machine Structures
’ . .
(It’s a bit more complicat
* Parallel Requests =

Assigned to computer Wareh;cuaslz

e.g., Search “Katz”

Harness
* Parallel Threads p, ciclism &

Assigned to core
e.g., Lookup, Ads
* Parallel Instructions
>1instruction @ one time
e.g., 5 pipelined instructions

ed!)

E—

Software Hardware

Computer

Achieve High 5 S
Performance ~ _ceemT Computer "~

* Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words]

\
Core \

Today’s istruction Unit(s) Functional
Lecture, "
’.3::3.:"“ Mmg/ﬁ,asﬁzm ,+B.

10/10/11

Hardware descriptions
All gates @ one time

Main Memory .-~

Logic Gates
o

Alternative Kinds of Parallelism:

Hardware vs. Software

Hardware

Matrix Multiply written in MatLab

Senal Windows Vista Operating System
running on an Intel Pentium 4 running on an Intel Pentium 4
Matrix Multiply written in MATLAB Windows Vista Operating System
Parallel

running on an Intel Xeon e5345

running on an Intel Xeon e5345
(Clovertown)

(Clovertown)

Concurrent software can also run on serial hardware
* Sequential software can also run on parallel hardware

« Our focus today is on sequential or concurrent
software running on parallel hardware

Fall 2011 - Lecture #19

10/10/11

Review

* Parallelism is one of the great ideas
* Request Level Parallelism
* Data Level Parallelism

— At the disk/server level — scale out to solve bigger
problems on more data
* Map Reduce/Hadoop

— At the memory level — today’s topic

10/10/11 Fall 2011 - Lecture #19

Agenda

* Flynn Taxonomy
* DLP and SIMD
* Intel SSE (part 1)

10/10/11

Fall 2011  Lecture #19

Flynn Taxonomy

Data Streams
Single

Multiple
Instruction ‘ Single ‘ SISD: Intel Pentium 4

SIMD: SSE instructions of x86

Streams J Multiple [ MISD: No examples today MIMD: Intel Xeon €5345 (Clovertown)

¢ In 2011, SIMD and MIMD most common parallel computers
* Most common parallel processing programming style:
Single Program Multiple Data (“SPMD”)
— Single program that runs on all processors of an MIMD
— Cross-processor execution coordination through conditional
expressions (thread parallelism - next lecture )
¢ SIMD (aka hw-level data parallelism): specialized function
units, for handling lock-step calculations involving arrays
— Scientific computing, signal processing, multimedia (audio/video)

10/10/11

Fall 2011 - Lecture #19




Flynn Taxonomy: SISD
Single Instruction/Single Data Stream

- ¢ Sequential computer that

exploits no parallelism in
either the instruction or
data streams.

—' * Examples of SISD
architecture are

traditional uniprocessor
machines

Data Pool

Processing Unit

10/10/11

Flynn Taxonomy: MISD

Multiple Instruction/Single Data Stream
* Exploits multiple

MISD instruction streams

against a single data

stream for operations

that can be naturally

parallelized. E.g., certain

kinds of array processors.

Data Pool

* No longer commonly
encountered, mainly of
historical interest only

re #119

Flynn Taxonomy: SIMD
Single Instruction/Multiple Data Stream

SIMD Instruction Pool

e Computer that applies a
single instruction
stream to multiple data
streams for operations
that may be naturally

—' parallelized

e.g., SIMD instruction
extensions or Graphics
Processing Unit (GPU)

Data Pool

Flynn Taxonomy: MIMD
Multiple Instruction/Multiple Data Streams

- * Multiple autonomous
MIMD Instruction Pool p

processors simultaneously
—] executing different
_.._ L. instructions on different
— * MIMD architectures include
—~H~——l—' multicore and Warehouse

data.
_.,_—L Scale Computers

Data Pool

* (Discuss in subsequent
lectures)

10/10/11 Fall 2011  Lecture #19 10

SIMD Architectures

» Data parallelism: executing one operation on
multiple data streams

» Example to provide context:
— Multiplying a coefficient vector by a data vector
(e.g., in filtering)
yli] = cl[i] x x[i], 0 = 1 < n

» Sources of performance improvement:
— One instruction is fetched & decoded for entire
operation
— Multiplications are known to be independent
— Pipelining/concurrency in memory access as well

10/10/11 Fall slide 11

“Advanced Digital Media Boost”

¢ To improve performance, Intel’s SIMD instructions
— Fetch one instruction, do the work of multiple instructions
— MMX (MultiMedia eXtension, Pentium Il processor family)
— SSE (Streaming SIMD Extension, Pentium Ill and beyond)

Source 1 ‘ X3 ‘ X2

X1 ‘ X0 ‘

Source 2 ‘ Y3 ‘ Y2 ‘ Y1 ‘ Y ‘

Destination‘ X3 0P Y3 ‘ X2 OP Y2 ‘ X10PY1 ‘ X0 OP YO ‘

10/10/11 Fall 2011 - Lecture #19 12




Example: SIMD Array Processing

for each f in array
f = sqrt(f)

for each f in array

{
load f to the floating-point register
calculate the square root
write the result from the register to memory
}
for each 4 members in array
{
load 4 members to the SSE register
calculate 4 square roots in one operation
write the result from the register to memory
}

10/10/11 Fall 2011 - Lecture #19 13

10/10/11

SSE Instruction Categories
for Multimedia Support

Unsigned add/subtract | Eight 8-bit or Four 16-bit
Saturating add/subtract | Eight 8-bit or Four 16-bit

Max/min/minimum Eight 8-bit or Four 16-bit

Average Eight 8-bit or Four 16-bit
Shift right/left Eight 8-bit or Four 16-bit

* SSE2+ supports wider data types to allow
16 x 8-bit and 8 x 16-bit operands

10/10/11 Fall 2011 - Lecture #19 15

Intel Architecture SSE2+
128-Bit SIMD Data Types

Fundamental 128-Bit Packed SIMD Data Types

AN N N N A A -7

127 122121 9695 8079 6463 4847 3231 1615 0  16/128bits

I I I I | | | I | Packed Words

127 122121 9695 8079 6463 4847 3231 1615 0o 8/128bits

I I | I | Packed Doublewords

127 96 95 6463 3231 0 4/128bits

I | I Packed Quadwords

127 6463 0 2/128bits

* Note: in Intel Architecture (unlike MIPS) a word is 16 bits

— Single precision FP: Double word (32 bits)
— Double precision FP: Quad word (64 bits)

10/10/11 Fall 2011 - Lecture #19 16

XMM Registers

127 0
XMM7

XMM6

XMM5

XMm4

XMM3

XMM2

XMM1

XMMO

« Architecture extended with eight 128-bit data registers: XMM registers
— 1A 64-bit address architecture: available as 16 64-bit registers (XMM8 — XMM15)
— E.g., 128-bit packed single-precision floating-point data type d:
allows four single-precision operations to be performed simultaneously

)

10/10/11 Fall 2011  Lecture #19 17

SSE/SSE?2 Floating Point Instructions
[ oriatanerer_|___swtmonc_|

Ul A S D/PD

Com)

MIN{SS/PS/SD/PD| men
xmm: one operand is a 128-bit SSE2 register
mem/xmm: other operand is in memory or an SSE2 register
{55} Scalar Single precision FP: one 32-bit operand in a 128-bit register
{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bit operand is aligned in memory
{U} means the 128-bit operand is unaligned in memory
{H} means move the high half of the 128-bit operand
{L} means move the low half of the 128-bit operand
1 Fall 2011 - Lecture #19 18

Example: Add Two Single Precision
FP Vectors

Computation to be performed:

vec_res.x = vl.x + v2.X;

vec_res.y = vl.y + v2.y; mov a ps: move from mem to XMM register,
vec res.z = vl.z + v2.z; memory aligned, packed single precision
vec_res.w = vl.w + v2.wj add ps: add from mem to XMM register,

packed single precision

SSE Instruction Sequence: mov a ps: move from XMM register to mem,

memory aligned, packed single precision

movaps address-of-vl, $xmm
// vl | vi.
addps address-of-v2, %
// vl.w+v2.w l.z+v2.z | vli.y+v2.y | v1.x+v2.x -> xmm0
movaps $xmm0, address-of-Vec_res

10/10/11 Fall 2011 - Lecture #19 19




Displays and Pixels

* Each coordinate in frame buffer on left determines shade of
corresponding coordinate for the raster scan CRT display on
right. Pixel (X0, YO) contains bit pattern 0011, a lighter shade
on the screen than the bit pattern 1101 in pixel (X1, Y1)

Frame buffer

Raster scan CRT display

Yo +——

Yq

Xo X Xo X4

10/10/11

Example: Image Converter

¢ Converts BMP (bitmap) image to a YUV (color
space) image format:

— Read individual pixels from the BMP image,
convert pixels into YUV format

— Can pack the pixels and operate on a set of pixels with
a single instruction

¢ E.g., bitmap image consists of 8 bit monochrome

pixels

— Pack these pixel values in a 128 bit register (8 bit * 16
pixels), can operate on 16 values at a time

— Significant performance boost

Example: Image Converter

* FMADDPS — Multiply and add packed single
precision floating point instruction

* One of the typical operations computed in
transformations (e.g., DFT or FFT)

N
P= f(n) xx(n)

n=1

Example: Image Converter
Floating point numbers f(n) and x(n) in src1 and src2; p in
dest;

C implementation for N = 4 (128 bits):
for (int i =0; i< 4; i++)
p = p + srcl[i] * src2[i];
Regular x86 instructions for the inner loop:
//srclis on the top of the stack; srcl * src2 -> srcl
fmul DWORD PTR _src2$[%esp+148]
//p = ST(1), src1 = ST(0); ST(0)+ST(1) -> ST(1); ST-Stack Top
faddp %ST(0), %ST(1)
(Note: Destination on the right in x86 assembly)
[\lu‘rlnber regular x86 Fl. Pt. ir‘1§ttuctionl§ executed: 4*2=8

Example: Image Converter

Floating point numbers f(n) and x(n) in src1 and src2; p in dest;
C implementation for N = 4 (128 bits):
for (int i =0; i< 4; i++)
p = p + srcl[i] * src2[i];
* SSE2 instructions for the inner loop:
//xmm0 = p, xmm1 = srcl[i], xmm2 = src2[i]
mulps %xmm1, %xmm2 //xmm2 * xmm1 -> xmm2
addps %xmm2, %xmm0 // xmmO0 + xmm2 ->xmm0
¢ Number regular instructions executed: 2 SSE2 instructions vs. 8 x86
* SSES5 instruction accomplishes same in one instruction:
fmaddps %xmm0, %xmm1, %xmm2, %xmmO0
// xmm2 * xmm1 + xmmO -> xmmO0

// multiply xmm1 x xmm2 paired single,
// then add product paired single to sum in xmmO
* Number regular instructions executed: 1 SSES5 instruction vs. 8 x86

So, in conclusion...

* Flynn Taxonomy of Parallel Architectures
— SIMD: Single Instruction Multiple Data
— MIMD: Multiple Instruction Multiple Data
— SISD: Single Instruction Single Data (unused)
— MISD: Multiple Instruction Single Data

* Intel SSE SIMD Instructions

— One instruction fetch that operates on multiple
operands simultaneously

—128/64 bit XMM registers




