CS 61C: Great Ideas in Computer
Architecture

Lecture 13 —Cache Basics (Cache I1)

Instructors:
Mike Franklin
Dan Garcia
http://inst.eecs.berkeley.edu/~cs61c/fall

Fall 2011 -- Lecture #13

9/28/11

In the News...
The importance of using
the right performance metrics |

The film is based on the best-selling
2003 book in Michael Lewis chronicled
the data-driven resurgence of the
Oakland A’s engineered by A’s general
manager Billy Beane and DePodesta,
who used computer analysis to
identify undervalued players.

BRAD PITT

JONAH HILL PHILIP SEYMOUR HOFFMAN

“We had a completely new set of metrics that bore no
resemblance to anything you’d seen. We didn’t solve baseball. But
we reduced the inefficiency of our decision making.”

www.datacenterknowledge.com/archives/2011/09/23/the-I f- ball-for-big-dat: lysi

y

9/28/11 Fall 2011 -- Lecture #13

Agenda

* Review — Direct Mapped Caches
¢ Handling Writes (updates)

* Handling Hits and Misses

* Performance Considerations

9/28/11 Fall 2011 -- Lecture #13

TIO: Mapping the Memory Address

* Lowest bits of address (Offset) determine
which byte within a block it refers to.
* Full address format (m-bit address):

m-1 0

[Tag | Index | Offset |

Memory Address

* n-bit Offset: a cache block is how many bytes?
* n-bit Index: cache has how many blocks?

9/28/11 Fall 2011 -- Lecture #13 4

Direct Mapped Cache Example

One word (4 Byte) blocks, cache size = 1K words (or 4KB)
Byte

3130 B2 210
offset

Hit Tag 20 10 Data
Index
Index Valid Tag Data
o [T T]
1 [| |
2 [F] |
L pes—

1021
1022
1023

What kind of locality are we taking advantage of?

9/28/11 Fall 2011 -- Lecture #13

Direct Mapped Cache (1Byte words)

* Consider the sequence of memory address accesses
Start with an empty cache - all blocks 0 1 2 3 4 3 4 15

initially marked as not valid
0000 0001 0010 0011 0100 0011 0100 1111

0 miss 1 miss 2 miss 3 miss
00 |Mem(0) 00 |Mem(0) 00 |Mem(0) 00 |Mem(0)
00 |Mem(1) 00 |Mem(1) 00 |Mem(1)
00 |Mem(2) 00 [Mem(2) |
00 |Mem(3)
T|m54 miss 3 hit!l! 4 hitll! 15 miss
0 4
sz\ Mem(| 01 [Mem(4) 01 |Mem(4) 01 |Mem(4)
00 |Mem(1) 00 |Mem(1) 00 |Mem(1) 00 |Mem(1)
00 [Mem(2) 00 [Mem(2) 00 |Mem(2) 00 |Mem(2)
00 | Mem(3) 00 |Mem(3) 00 [Mem(3) | 1408 [Mem(3) s
Time se——
« 8requests, 2 hits, 6 misses = 25% hit rate
5/28/11 Fall 2011 -- Lecture #13

9/28/11

Taking Advantage of Spatial Locality

* Let cache block hold more than one byte (say, two)
Start with an empty cache - all blocks 0 1 2 3 4 3 4 15
initally marked os not valid 0000 0001 0010 0011 0100 0011 0100 1111
0 miss 1 hit 2 miss
[T 00 [Mem(1) [Mem(0) | [00 [Mem(1) [Mem(0) | [00 [Mem(1) [Mem(0) |
L] | [| [Loo [mem@) |Mem(2) |

3 hit o 4 miss 3hit
[[00 [Mem(1) [Mem(0) |~ [~00 | Mem{1)’[Mem(®)_|* [01 [Mem(5) [Mem(4) |
|00 [Mem(3) [Mem(2) | [00| Mem(3) [Mem(2) | [00 |Mem(3) [Mem(2) |
4 hit 15 miss
[01 [Mem(5) [Mem(4)]

11} 01 [Mem(5) [Mem(4) |

‘SQ] Mem@ IMem(})\[
15 14

- 8requests, 4 hites, 4 misses = 50% hit rate!
Fall 2011 -- Lecture #13

[_00 [Mem(3) [Mem(2)]

9/28/11

Multiword Block Direct Mapped Cache
Four words/block, cache size = 1K words (256 blocks) (4KB Total data)

B121 ... 43210

Hit 3130 Data

Tag 2 s Block offset

Index

Index Valid _Tag
o [T T T T T |
1 [Il | Il Il |
2 H Il | Il Il |

253
254
255

. . . 32
What kind of locality are we taking advantage of?
28/11 Fall 2011 -- Lecture #13

Miss Rate vs Block Size vs Cache Size

10

— 8KB
< 16 KB
(]
T 5 64 KB
H -+256 KB
s

—

0 T T T
16 32 64 128 256

Block size (bytes)
- Miss rate goes up if the block size becomes a significant fraction
of the cache size because the number of blocks that can be held

in the same size cache is smaller (increasing capacity misses)
9/28/11 Fall 2011 -- Lecture #13 3

Cache-Memory Consistency? (1/2)

* Need to make sure cache and memory are
consistent (i.e., know about all updates)

1) Write-Through Policy: write cache and write
through the cache to memory
— Every write eventually gets to memory

— Too slow, so include Write Buffer to allow
processor to continue once data in Buffer,
Buffer updates memory in parallel to processor

28/11 Fall 2011 -- Lecture #13 0

Cache-Memory Consistency? (2/2)

2) Write-Back Policy: write only to cache and
then write cache block back to memory when
evict block from cache

— Writes collected in cache, only single write to
memory per block

— Include bit to see if wrote to block or not, and
then only write back if bit is set
« Called “Dirty” bit (writing makes it “dirty”)

9/28/11 Fall 2011 -- Lecture #13 !

Handling Cache Hits

* Read hits (I$ and DS)
— Hits are good in helping us go fast
— Misses are bad/slow us down

* Write hits (D$ only)
— Require cache and memory to be consistent
* Write-through: Always write the data into the cache block and the
next level in the memory hierarchy
* Writes run at the speed of next level in memory hierarchy — so slow! —
or can use a write buffer and stall only if the write buffer is full
— Allow cache and memory to be inconsistent
* Write-back: Write the data only into the cache block (cache block
written back to next level in memory hierarchy when it is “evicted”)

* Need a dirty bit for each data cache block to tell if it needs to be
written back to memory when evicted — can use a write buffer to help
“buffer” write-backs of dirty blocks

Fall 2011 -- Lecture #13 12

Handling Cache Misses
(Single Word Blocks)

* Read misses (I$ and D$)

— Stall execution, fetch the block from the next level in the memory
hierarchy, install it in the cache and send requested word to
processor, then resume execution

* Write misses (D$ only)

— Stall execution, fetch the block from next level in the memory
hierarchy, install it in cache (may involve evicting a dirty block if using
write-back), write the word from processor to cache, resume

or

— Write allocate: just write word into the cache updating both tag and
data; no need to check for cache hit, no need to stall

or

— No-write allocate: skip the cache write (but must invalidate cache
block since it will now hold stale data) and just write the word to write
buffer (and eventually to the next memory level); no need to stall if
write buffer isn’t full (write through only)

Fall 2011 -- Lecture #13

9/28/11

Handling Cache Misses
(Multiword Block Considerations)

* Read misses (I$ and D$)
— Processed the same as for single word blocks — a miss returns
the entire block from memory
— Miss penalty grows as block size grows

* Early restart: processor resumes execution as soon as the requested
word of the block is returned

* Requested word first: requested word is transferred from the memory
to the cache (and processor) first

— Nonblocking cache — allows the processor to continue to access
cache while cache is handling an earlier miss

e Write misses (DS)

— If using write allocate must first fetch block from memory and
then write word to block (or could end up with a “garbled”
block in the cache.

— E.g., for 4 word blocks, a new tag, one word of data from the
new block, and three words of data from the old block)

5/28/11 Fall 2011 -- Lecture #13 “

“And In Conclusion..”

* Direct Mapped Cache — Each block in memory
maps to one block in the cache.
— Index to determine which block.
— Offset to determine which byte within block
— Tag to determine if it’s the right block.
* AMAT to measure cache performance
¢ Cache can have major impact on CPI
¢ Multi-level cache can help

9/28/11 Fall 2011 -- Lecture #13

Peer Instruction

For a given cache size: a larger block size can ABC
cause a lower hit rate than a smaller one. 1: FFF
If you know your computer’s cache size, youcan |1: FFT
often make your code run faster. 2: FTF
Memory hierarchies take advantage of spatial 2: FIT
locality by keeping the most recent data items 3: TFF
closer to the processor. 3: TFT

4: TTF

5: TTT

Fall 2011 -- Lecture #13 L .

A.

B.
C.

Peer Instruction Answer

Yes — if the block size gets too big, fetches become more
expensive and the big blocks force out more useful data.

Certainly! That’s call “tuning”

“Most Recent” items => Temporal locality

ABC
FFF
FFT
FTF
FTT
TFF
spatial locality TFT

closer T TTE

make your code run faster

WWNN R

Q. 11T

Fall 2011 -- Lecture #13

